Solve for y (complex solution)
\left\{\begin{matrix}\\y=\left(1-\sqrt{2}\right)x\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=\left(1-\sqrt{2}\right)x\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
x=-\left(\sqrt{2}+1\right)y
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{2}-2\right)x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Multiply both sides of the equation by 2.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x^{2}.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\left(\sqrt{2}-2\right)x}{2}+x\right)y
Express \frac{\sqrt{2}-2}{2}x as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\left(\sqrt{2}-2\right)x}{2}+2x\right)y
Use the distributive property to multiply 2 by \frac{\left(\sqrt{2}-2\right)x}{2}+x.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\sqrt{2}x-2x}{2}+2x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x.
\sqrt{2}x^{2}-2x^{2}=\left(\frac{2\left(\sqrt{2}x-2x\right)}{2}+2x\right)y
Express 2\times \frac{\sqrt{2}x-2x}{2} as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(\sqrt{2}x-2x+2x\right)y
Cancel out 2 and 2.
\sqrt{2}x^{2}-2x^{2}=\sqrt{2}xy
Combine -2x and 2x to get 0.
\sqrt{2}xy=\sqrt{2}x^{2}-2x^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{2}xy}{\sqrt{2}x}=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Divide both sides by \sqrt{2}x.
y=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Dividing by \sqrt{2}x undoes the multiplication by \sqrt{2}x.
y=-\sqrt{2}x+x
Divide \left(\sqrt{2}-2\right)x^{2} by \sqrt{2}x.
\left(\sqrt{2}-2\right)x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Multiply both sides of the equation by 2.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x^{2}.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\left(\sqrt{2}-2\right)x}{2}+x\right)y
Express \frac{\sqrt{2}-2}{2}x as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\left(\sqrt{2}-2\right)x}{2}+2x\right)y
Use the distributive property to multiply 2 by \frac{\left(\sqrt{2}-2\right)x}{2}+x.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\sqrt{2}x-2x}{2}+2x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x.
\sqrt{2}x^{2}-2x^{2}=\left(\frac{2\left(\sqrt{2}x-2x\right)}{2}+2x\right)y
Express 2\times \frac{\sqrt{2}x-2x}{2} as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(\sqrt{2}x-2x+2x\right)y
Cancel out 2 and 2.
\sqrt{2}x^{2}-2x^{2}=\sqrt{2}xy
Combine -2x and 2x to get 0.
\sqrt{2}xy=\sqrt{2}x^{2}-2x^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{2}xy}{\sqrt{2}x}=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Divide both sides by \sqrt{2}x.
y=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Dividing by \sqrt{2}x undoes the multiplication by \sqrt{2}x.
y=-\sqrt{2}x+x
Divide \left(\sqrt{2}-2\right)x^{2} by \sqrt{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}