Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2}-2\right)x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Multiply both sides of the equation by 2.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x^{2}.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\left(\sqrt{2}-2\right)x}{2}+x\right)y
Express \frac{\sqrt{2}-2}{2}x as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\left(\sqrt{2}-2\right)x}{2}+2x\right)y
Use the distributive property to multiply 2 by \frac{\left(\sqrt{2}-2\right)x}{2}+x.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\sqrt{2}x-2x}{2}+2x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x.
\sqrt{2}x^{2}-2x^{2}=\left(\frac{2\left(\sqrt{2}x-2x\right)}{2}+2x\right)y
Express 2\times \frac{\sqrt{2}x-2x}{2} as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(\sqrt{2}x-2x+2x\right)y
Cancel out 2 and 2.
\sqrt{2}x^{2}-2x^{2}=\sqrt{2}xy
Combine -2x and 2x to get 0.
\sqrt{2}xy=\sqrt{2}x^{2}-2x^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{2}xy}{\sqrt{2}x}=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Divide both sides by \sqrt{2}x.
y=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Dividing by \sqrt{2}x undoes the multiplication by \sqrt{2}x.
y=-\sqrt{2}x+x
Divide \left(\sqrt{2}-2\right)x^{2} by \sqrt{2}x.
\left(\sqrt{2}-2\right)x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Multiply both sides of the equation by 2.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\sqrt{2}-2}{2}x+x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x^{2}.
\sqrt{2}x^{2}-2x^{2}=2\left(\frac{\left(\sqrt{2}-2\right)x}{2}+x\right)y
Express \frac{\sqrt{2}-2}{2}x as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\left(\sqrt{2}-2\right)x}{2}+2x\right)y
Use the distributive property to multiply 2 by \frac{\left(\sqrt{2}-2\right)x}{2}+x.
\sqrt{2}x^{2}-2x^{2}=\left(2\times \frac{\sqrt{2}x-2x}{2}+2x\right)y
Use the distributive property to multiply \sqrt{2}-2 by x.
\sqrt{2}x^{2}-2x^{2}=\left(\frac{2\left(\sqrt{2}x-2x\right)}{2}+2x\right)y
Express 2\times \frac{\sqrt{2}x-2x}{2} as a single fraction.
\sqrt{2}x^{2}-2x^{2}=\left(\sqrt{2}x-2x+2x\right)y
Cancel out 2 and 2.
\sqrt{2}x^{2}-2x^{2}=\sqrt{2}xy
Combine -2x and 2x to get 0.
\sqrt{2}xy=\sqrt{2}x^{2}-2x^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{\sqrt{2}xy}{\sqrt{2}x}=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Divide both sides by \sqrt{2}x.
y=\frac{\left(\sqrt{2}-2\right)x^{2}}{\sqrt{2}x}
Dividing by \sqrt{2}x undoes the multiplication by \sqrt{2}x.
y=-\sqrt{2}x+x
Divide \left(\sqrt{2}-2\right)x^{2} by \sqrt{2}x.