Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}\left(3x^{2}+15\right)
Multiply both sides of the equation by 2.
2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}
Use the distributive property to multiply \frac{2}{3}\times 3^{\frac{1}{2}} by 3x^{2}+15.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}=2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
2\times 3^{\frac{1}{2}}x^{2}=2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}-10\times 3^{\frac{1}{2}}
Subtract 10\times 3^{\frac{1}{2}} from both sides.
2\times 3^{\frac{1}{2}}x^{2}=2\sqrt{2}-\frac{28}{3}\times 3^{\frac{1}{2}}
Combine \frac{2}{3}\times 3^{\frac{1}{2}} and -10\times 3^{\frac{1}{2}} to get -\frac{28}{3}\times 3^{\frac{1}{2}}.
2\sqrt{3}x^{2}=-\frac{28}{3}\sqrt{3}+2\sqrt{2}
Reorder the terms.
x^{2}=\frac{-\frac{28\sqrt{3}}{3}+2\sqrt{2}}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
x^{2}=\frac{\sqrt{6}-14}{3}
Divide -\frac{28\sqrt{3}}{3}+2\sqrt{2} by 2\sqrt{3}.
x=\frac{i\sqrt{42-3\sqrt{6}}}{3} x=-\frac{i\sqrt{42-3\sqrt{6}}}{3}
Take the square root of both sides of the equation.
2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=\frac{2}{3}\times 3^{\frac{1}{2}}\left(3x^{2}+15\right)
Multiply both sides of the equation by 2.
2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}=2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}
Use the distributive property to multiply \frac{2}{3}\times 3^{\frac{1}{2}} by 3x^{2}+15.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}=2\sqrt{2}+\frac{2}{3}\times 3^{\frac{1}{2}}
Swap sides so that all variable terms are on the left hand side.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}-2\sqrt{2}=\frac{2}{3}\times 3^{\frac{1}{2}}
Subtract 2\sqrt{2} from both sides.
2\times 3^{\frac{1}{2}}x^{2}+10\times 3^{\frac{1}{2}}-2\sqrt{2}-\frac{2}{3}\times 3^{\frac{1}{2}}=0
Subtract \frac{2}{3}\times 3^{\frac{1}{2}} from both sides.
2\times 3^{\frac{1}{2}}x^{2}+\frac{28}{3}\times 3^{\frac{1}{2}}-2\sqrt{2}=0
Combine 10\times 3^{\frac{1}{2}} and -\frac{2}{3}\times 3^{\frac{1}{2}} to get \frac{28}{3}\times 3^{\frac{1}{2}}.
2\sqrt{3}x^{2}-2\sqrt{2}+\frac{28}{3}\sqrt{3}=0
Reorder the terms.
2\sqrt{3}x^{2}+\frac{28\sqrt{3}}{3}-2\sqrt{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\sqrt{3}\left(\frac{28\sqrt{3}}{3}-2\sqrt{2}\right)}}{2\times 2\sqrt{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2\sqrt{3} for a, 0 for b, and -2\sqrt{2}+\frac{28\sqrt{3}}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\sqrt{3}\left(\frac{28\sqrt{3}}{3}-2\sqrt{2}\right)}}{2\times 2\sqrt{3}}
Square 0.
x=\frac{0±\sqrt{\left(-8\sqrt{3}\right)\left(\frac{28\sqrt{3}}{3}-2\sqrt{2}\right)}}{2\times 2\sqrt{3}}
Multiply -4 times 2\sqrt{3}.
x=\frac{0±\sqrt{16\sqrt{6}-224}}{2\times 2\sqrt{3}}
Multiply -8\sqrt{3} times -2\sqrt{2}+\frac{28\sqrt{3}}{3}.
x=\frac{0±4i\sqrt{14-\sqrt{6}}}{2\times 2\sqrt{3}}
Take the square root of 16\sqrt{6}-224.
x=\frac{0±4i\sqrt{14-\sqrt{6}}}{4\sqrt{3}}
Multiply 2 times 2\sqrt{3}.
x=\frac{i\sqrt{42-3\sqrt{6}}}{3}
Now solve the equation x=\frac{0±4i\sqrt{14-\sqrt{6}}}{4\sqrt{3}} when ± is plus.
x=-\frac{i\sqrt{42-3\sqrt{6}}}{3}
Now solve the equation x=\frac{0±4i\sqrt{14-\sqrt{6}}}{4\sqrt{3}} when ± is minus.
x=\frac{i\sqrt{42-3\sqrt{6}}}{3} x=-\frac{i\sqrt{42-3\sqrt{6}}}{3}
The equation is now solved.