Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}+3} by multiplying numerator and denominator by \sqrt{5}-3.
\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{\left(\sqrt{5}\right)^{2}-3^{2}}
Consider \left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{5-9}
Square \sqrt{5}. Square 3.
\frac{\sqrt{2}\left(\sqrt{5}-3\right)}{-4}
Subtract 9 from 5 to get -4.
\frac{\sqrt{2}\sqrt{5}-3\sqrt{2}}{-4}
Use the distributive property to multiply \sqrt{2} by \sqrt{5}-3.
\frac{\sqrt{10}-3\sqrt{2}}{-4}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{-\sqrt{10}+3\sqrt{2}}{4}
Multiply both numerator and denominator by -1.