Evaluate
\frac{\sqrt{6}}{5}\approx 0.489897949
Quiz
Arithmetic
5 problems similar to:
\frac{ \sqrt{ 2 } }{ \sqrt{ 5 } } \frac{ \sqrt{ 3 } }{ \sqrt{ 5 } }
Share
Copied to clipboard
\frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{\sqrt{3}}{\sqrt{5}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{2}\sqrt{5}}{5}\times \frac{\sqrt{3}}{\sqrt{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{5}\times \frac{\sqrt{3}}{\sqrt{5}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}}{5}\times \frac{\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{10}}{5}\times \frac{\sqrt{3}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{\sqrt{10}}{5}\times \frac{\sqrt{15}}{5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{10}\sqrt{15}}{5\times 5}
Multiply \frac{\sqrt{10}}{5} times \frac{\sqrt{15}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{150}}{5\times 5}
To multiply \sqrt{10} and \sqrt{15}, multiply the numbers under the square root.
\frac{\sqrt{150}}{25}
Multiply 5 and 5 to get 25.
\frac{5\sqrt{6}}{25}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{1}{5}\sqrt{6}
Divide 5\sqrt{6} by 25 to get \frac{1}{5}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}