Solve for a
a=1
Share
Copied to clipboard
\frac{\sqrt{12a-3a^{2}}}{2a}=\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
\sqrt{12a-3a^{2}}=3a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of 2a,2.
\left(\sqrt{12a-3a^{2}}\right)^{2}=\left(3a\right)^{2}
Square both sides of the equation.
12a-3a^{2}=\left(3a\right)^{2}
Calculate \sqrt{12a-3a^{2}} to the power of 2 and get 12a-3a^{2}.
12a-3a^{2}=3^{2}a^{2}
Expand \left(3a\right)^{2}.
12a-3a^{2}=9a^{2}
Calculate 3 to the power of 2 and get 9.
12a-3a^{2}-9a^{2}=0
Subtract 9a^{2} from both sides.
12a-12a^{2}=0
Combine -3a^{2} and -9a^{2} to get -12a^{2}.
a\left(12-12a\right)=0
Factor out a.
a=0 a=1
To find equation solutions, solve a=0 and 12-12a=0.
\frac{\sqrt{12\times 0-3\times 0^{2}}}{2\times 0}+\frac{3}{2}=3
Substitute 0 for a in the equation \frac{\sqrt{12a-3a^{2}}}{2a}+\frac{3}{2}=3. The expression is undefined.
\frac{\sqrt{12\times 1-3\times 1^{2}}}{2\times 1}+\frac{3}{2}=3
Substitute 1 for a in the equation \frac{\sqrt{12a-3a^{2}}}{2a}+\frac{3}{2}=3.
3=3
Simplify. The value a=1 satisfies the equation.
a=1
Equation \sqrt{12a-3a^{2}}=3a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}