Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{10}+3\right)\left(\sqrt{10}+3\right)}{\left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right)}
Rationalize the denominator of \frac{\sqrt{10}+3}{\sqrt{10}-3} by multiplying numerator and denominator by \sqrt{10}+3.
\frac{\left(\sqrt{10}+3\right)\left(\sqrt{10}+3\right)}{\left(\sqrt{10}\right)^{2}-3^{2}}
Consider \left(\sqrt{10}-3\right)\left(\sqrt{10}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{10}+3\right)\left(\sqrt{10}+3\right)}{10-9}
Square \sqrt{10}. Square 3.
\frac{\left(\sqrt{10}+3\right)\left(\sqrt{10}+3\right)}{1}
Subtract 9 from 10 to get 1.
\left(\sqrt{10}+3\right)\left(\sqrt{10}+3\right)
Anything divided by one gives itself.
\left(\sqrt{10}+3\right)^{2}
Multiply \sqrt{10}+3 and \sqrt{10}+3 to get \left(\sqrt{10}+3\right)^{2}.
\left(\sqrt{10}\right)^{2}+6\sqrt{10}+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{10}+3\right)^{2}.
10+6\sqrt{10}+9
The square of \sqrt{10} is 10.
19+6\sqrt{10}
Add 10 and 9 to get 19.