Evaluate (complex solution)
\frac{49}{12}i\approx 4.083333333i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{\sqrt{49}\sqrt{-7^{2}}}{\sqrt{144}}
Calculate 7 to the power of 2 and get 49.
\frac{7\sqrt{-7^{2}}}{\sqrt{144}}
Calculate the square root of 49 and get 7.
\frac{7\sqrt{-49}}{\sqrt{144}}
Calculate 7 to the power of 2 and get 49.
\frac{7\times \left(7i\right)}{\sqrt{144}}
Calculate the square root of -49 and get 7i.
\frac{49i}{\sqrt{144}}
Multiply 7 and 7i to get 49i.
\frac{49i}{12}
Calculate the square root of 144 and get 12.
\frac{49}{12}i
Divide 49i by 12 to get \frac{49}{12}i.
Re(\frac{\sqrt{49}\sqrt{-7^{2}}}{\sqrt{144}})
Calculate 7 to the power of 2 and get 49.
Re(\frac{7\sqrt{-7^{2}}}{\sqrt{144}})
Calculate the square root of 49 and get 7.
Re(\frac{7\sqrt{-49}}{\sqrt{144}})
Calculate 7 to the power of 2 and get 49.
Re(\frac{7\times \left(7i\right)}{\sqrt{144}})
Calculate the square root of -49 and get 7i.
Re(\frac{49i}{\sqrt{144}})
Multiply 7 and 7i to get 49i.
Re(\frac{49i}{12})
Calculate the square root of 144 and get 12.
Re(\frac{49}{12}i)
Divide 49i by 12 to get \frac{49}{12}i.
0
The real part of \frac{49}{12}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}