Evaluate
\frac{\sqrt{14}}{4}\approx 0.935414347
Share
Copied to clipboard
\frac{\sqrt{\frac{24.93\times 323}{6.02\times 10^{23}\times 0.6\times 8}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 3 and 8.31 to get 24.93.
\frac{\sqrt{\frac{8052.39}{6.02\times 10^{23}\times 0.6\times 8}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 24.93 and 323 to get 8052.39.
\frac{\sqrt{\frac{8052.39}{6.02\times 100000000000000000000000\times 0.6\times 8}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Calculate 10 to the power of 23 and get 100000000000000000000000.
\frac{\sqrt{\frac{8052.39}{602000000000000000000000\times 0.6\times 8}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 6.02 and 100000000000000000000000 to get 602000000000000000000000.
\frac{\sqrt{\frac{8052.39}{361200000000000000000000\times 8}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 602000000000000000000000 and 0.6 to get 361200000000000000000000.
\frac{\sqrt{\frac{8052.39}{2889600000000000000000000}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 361200000000000000000000 and 8 to get 2889600000000000000000000.
\frac{\sqrt{\frac{805239}{288960000000000000000000000}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Expand \frac{8052.39}{2889600000000000000000000} by multiplying both numerator and the denominator by 100.
\frac{\sqrt{\frac{268413}{96320000000000000000000000}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Reduce the fraction \frac{805239}{288960000000000000000000000} to lowest terms by extracting and canceling out 3.
\frac{\frac{\sqrt{268413}}{\sqrt{96320000000000000000000000}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Rewrite the square root of the division \sqrt{\frac{268413}{96320000000000000000000000}} as the division of square roots \frac{\sqrt{268413}}{\sqrt{96320000000000000000000000}}.
\frac{\frac{\sqrt{268413}}{400000000000\sqrt{602}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Factor 96320000000000000000000000=400000000000^{2}\times 602. Rewrite the square root of the product \sqrt{400000000000^{2}\times 602} as the product of square roots \sqrt{400000000000^{2}}\sqrt{602}. Take the square root of 400000000000^{2}.
\frac{\frac{\sqrt{268413}\sqrt{602}}{400000000000\left(\sqrt{602}\right)^{2}}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Rationalize the denominator of \frac{\sqrt{268413}}{400000000000\sqrt{602}} by multiplying numerator and denominator by \sqrt{602}.
\frac{\frac{\sqrt{268413}\sqrt{602}}{400000000000\times 602}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
The square of \sqrt{602} is 602.
\frac{\frac{\sqrt{161584626}}{400000000000\times 602}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
To multiply \sqrt{268413} and \sqrt{602}, multiply the numbers under the square root.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{3\times 8.31\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 400000000000 and 602 to get 240800000000000.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{24.93\times 323}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 3 and 8.31 to get 24.93.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{8052.39}{6.02\times 10^{23}\times 0.6\times 7}}}
Multiply 24.93 and 323 to get 8052.39.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{8052.39}{6.02\times 100000000000000000000000\times 0.6\times 7}}}
Calculate 10 to the power of 23 and get 100000000000000000000000.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{8052.39}{602000000000000000000000\times 0.6\times 7}}}
Multiply 6.02 and 100000000000000000000000 to get 602000000000000000000000.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{8052.39}{361200000000000000000000\times 7}}}
Multiply 602000000000000000000000 and 0.6 to get 361200000000000000000000.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{8052.39}{2528400000000000000000000}}}
Multiply 361200000000000000000000 and 7 to get 2528400000000000000000000.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{805239}{252840000000000000000000000}}}
Expand \frac{8052.39}{2528400000000000000000000} by multiplying both numerator and the denominator by 100.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\sqrt{\frac{268413}{84280000000000000000000000}}}
Reduce the fraction \frac{805239}{252840000000000000000000000} to lowest terms by extracting and canceling out 3.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\frac{\sqrt{268413}}{\sqrt{84280000000000000000000000}}}
Rewrite the square root of the division \sqrt{\frac{268413}{84280000000000000000000000}} as the division of square roots \frac{\sqrt{268413}}{\sqrt{84280000000000000000000000}}.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\frac{\sqrt{268413}}{1400000000000\sqrt{43}}}
Factor 84280000000000000000000000=1400000000000^{2}\times 43. Rewrite the square root of the product \sqrt{1400000000000^{2}\times 43} as the product of square roots \sqrt{1400000000000^{2}}\sqrt{43}. Take the square root of 1400000000000^{2}.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\frac{\sqrt{268413}\sqrt{43}}{1400000000000\left(\sqrt{43}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{268413}}{1400000000000\sqrt{43}} by multiplying numerator and denominator by \sqrt{43}.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\frac{\sqrt{268413}\sqrt{43}}{1400000000000\times 43}}
The square of \sqrt{43} is 43.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\frac{\sqrt{11541759}}{1400000000000\times 43}}
To multiply \sqrt{268413} and \sqrt{43}, multiply the numbers under the square root.
\frac{\frac{\sqrt{161584626}}{240800000000000}}{\frac{\sqrt{11541759}}{60200000000000}}
Multiply 1400000000000 and 43 to get 60200000000000.
\frac{\sqrt{161584626}\times 60200000000000}{240800000000000\sqrt{11541759}}
Divide \frac{\sqrt{161584626}}{240800000000000} by \frac{\sqrt{11541759}}{60200000000000} by multiplying \frac{\sqrt{161584626}}{240800000000000} by the reciprocal of \frac{\sqrt{11541759}}{60200000000000}.
\frac{\sqrt{161584626}}{4\sqrt{11541759}}
Cancel out 60200000000000 in both numerator and denominator.
\frac{\sqrt{161584626}\sqrt{11541759}}{4\left(\sqrt{11541759}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{161584626}}{4\sqrt{11541759}} by multiplying numerator and denominator by \sqrt{11541759}.
\frac{\sqrt{161584626}\sqrt{11541759}}{4\times 11541759}
The square of \sqrt{11541759} is 11541759.
\frac{\sqrt{11541759}\sqrt{14}\sqrt{11541759}}{4\times 11541759}
Factor 161584626=11541759\times 14. Rewrite the square root of the product \sqrt{11541759\times 14} as the product of square roots \sqrt{11541759}\sqrt{14}.
\frac{11541759\sqrt{14}}{4\times 11541759}
Multiply \sqrt{11541759} and \sqrt{11541759} to get 11541759.
\frac{11541759\sqrt{14}}{46167036}
Multiply 4 and 11541759 to get 46167036.
\frac{1}{4}\sqrt{14}
Divide 11541759\sqrt{14} by 46167036 to get \frac{1}{4}\sqrt{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}