Evaluate
\frac{\sqrt{33}}{9}\approx 0.638284739
Share
Copied to clipboard
\frac{\frac{\sqrt{275}}{\sqrt{27}}}{5}
Rewrite the square root of the division \sqrt{\frac{275}{27}} as the division of square roots \frac{\sqrt{275}}{\sqrt{27}}.
\frac{\frac{5\sqrt{11}}{\sqrt{27}}}{5}
Factor 275=5^{2}\times 11. Rewrite the square root of the product \sqrt{5^{2}\times 11} as the product of square roots \sqrt{5^{2}}\sqrt{11}. Take the square root of 5^{2}.
\frac{\frac{5\sqrt{11}}{3\sqrt{3}}}{5}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\frac{5\sqrt{11}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}}{5}
Rationalize the denominator of \frac{5\sqrt{11}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{5\sqrt{11}\sqrt{3}}{3\times 3}}{5}
The square of \sqrt{3} is 3.
\frac{\frac{5\sqrt{33}}{3\times 3}}{5}
To multiply \sqrt{11} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{5\sqrt{33}}{9}}{5}
Multiply 3 and 3 to get 9.
\frac{5\sqrt{33}}{9\times 5}
Express \frac{\frac{5\sqrt{33}}{9}}{5} as a single fraction.
\frac{\sqrt{33}}{9}
Cancel out 5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}