Solve for y (complex solution)
y=\frac{\sqrt[3]{7}\left(5x^{2}+42\right)^{-\frac{1}{3}}\left(\sqrt[3]{5x^{2}+66}-\sqrt{x-11}\right)}{x}
x\neq 0\text{ and }x\neq -\frac{\sqrt{210}i}{5}\text{ and }x\neq \frac{\sqrt{210}i}{5}
Solve for y
y=\frac{\sqrt[3]{\frac{7}{5x^{2}+42}}\left(\sqrt[3]{5x^{2}+66}-\sqrt{x-11}\right)}{x}
x\geq 11
Graph
Share
Copied to clipboard
xy=\frac{\sqrt[3]{5x^{2}+66}-\sqrt{x-11}}{\sqrt[3]{\frac{5x^{2}}{7}+6}}
Swap sides so that all variable terms are on the left hand side.
\frac{xy}{x}=\frac{\sqrt[3]{7}\left(5x^{2}+42\right)^{-\frac{1}{3}}\left(\sqrt[3]{5x^{2}+66}-\sqrt{x-11}\right)}{x}
Divide both sides by x.
y=\frac{\sqrt[3]{7}\left(5x^{2}+42\right)^{-\frac{1}{3}}\left(\sqrt[3]{5x^{2}+66}-\sqrt{x-11}\right)}{x}
Dividing by x undoes the multiplication by x.
xy=\frac{\sqrt[3]{5x^{2}+66}-\sqrt{x-11}}{\sqrt[3]{\frac{5x^{2}}{7}+6}}
Swap sides so that all variable terms are on the left hand side.
\frac{xy}{x}=\frac{\sqrt[3]{7}\left(\sqrt[3]{5x^{2}+66}-\sqrt{x-11}\right)}{\sqrt[3]{5x^{2}+42}x}
Divide both sides by x.
y=\frac{\sqrt[3]{7}\left(\sqrt[3]{5x^{2}+66}-\sqrt{x-11}\right)}{\sqrt[3]{5x^{2}+42}x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}