Evaluate
\frac{97}{4}=24.25
Factor
\frac{97}{2 ^ {2}} = 24\frac{1}{4} = 24.25
Share
Copied to clipboard
\frac{\sqrt[3]{\frac{11^{5}\times 6}{36^{2}\times 11^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+\left(2^{3}\right)^{2}\times 2^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 12 from 15 to get 3.
\frac{\sqrt[3]{\frac{11^{5}\times 6}{36^{2}\times 11^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{6}\times 2^{-2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\sqrt[3]{\frac{11^{5}\times 6}{36^{2}\times 11^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
To multiply powers of the same base, add their exponents. Add 6 and -2 to get 4.
\frac{\sqrt[3]{\frac{6\times 11^{3}}{36^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Cancel out 11^{2} in both numerator and denominator.
\frac{\sqrt[3]{\frac{6\times 1331}{36^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Calculate 11 to the power of 3 and get 1331.
\frac{\sqrt[3]{\frac{7986}{36^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Multiply 6 and 1331 to get 7986.
\frac{\sqrt[3]{\frac{7986}{1296}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Calculate 36 to the power of 2 and get 1296.
\frac{\sqrt[3]{\frac{1331}{216}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Reduce the fraction \frac{7986}{1296} to lowest terms by extracting and canceling out 6.
\frac{\frac{11}{6}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Calculate \sqrt[3]{\frac{1331}{216}} and get \frac{11}{6}.
\frac{\frac{11}{6}}{\sqrt{\frac{4}{81}}}+2^{4}
Calculate -\frac{2}{9} to the power of 2 and get \frac{4}{81}.
\frac{\frac{11}{6}}{\frac{2}{9}}+2^{4}
Rewrite the square root of the division \frac{4}{81} as the division of square roots \frac{\sqrt{4}}{\sqrt{81}}. Take the square root of both numerator and denominator.
\frac{11}{6}\times \frac{9}{2}+2^{4}
Divide \frac{11}{6} by \frac{2}{9} by multiplying \frac{11}{6} by the reciprocal of \frac{2}{9}.
\frac{33}{4}+2^{4}
Multiply \frac{11}{6} and \frac{9}{2} to get \frac{33}{4}.
\frac{33}{4}+16
Calculate 2 to the power of 4 and get 16.
\frac{97}{4}
Add \frac{33}{4} and 16 to get \frac{97}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}