Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt[3]{\frac{11^{5}\times 6}{36^{2}\times 11^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+\left(2^{3}\right)^{2}\times 2^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 12 from 15 to get 3.
\frac{\sqrt[3]{\frac{11^{5}\times 6}{36^{2}\times 11^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{6}\times 2^{-2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\sqrt[3]{\frac{11^{5}\times 6}{36^{2}\times 11^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
To multiply powers of the same base, add their exponents. Add 6 and -2 to get 4.
\frac{\sqrt[3]{\frac{6\times 11^{3}}{36^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Cancel out 11^{2} in both numerator and denominator.
\frac{\sqrt[3]{\frac{6\times 1331}{36^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Calculate 11 to the power of 3 and get 1331.
\frac{\sqrt[3]{\frac{7986}{36^{2}}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Multiply 6 and 1331 to get 7986.
\frac{\sqrt[3]{\frac{7986}{1296}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Calculate 36 to the power of 2 and get 1296.
\frac{\sqrt[3]{\frac{1331}{216}}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Reduce the fraction \frac{7986}{1296} to lowest terms by extracting and canceling out 6.
\frac{\frac{11}{6}}{\sqrt{\left(-\frac{2}{9}\right)^{2}}}+2^{4}
Calculate \sqrt[3]{\frac{1331}{216}} and get \frac{11}{6}.
\frac{\frac{11}{6}}{\sqrt{\frac{4}{81}}}+2^{4}
Calculate -\frac{2}{9} to the power of 2 and get \frac{4}{81}.
\frac{\frac{11}{6}}{\frac{2}{9}}+2^{4}
Rewrite the square root of the division \frac{4}{81} as the division of square roots \frac{\sqrt{4}}{\sqrt{81}}. Take the square root of both numerator and denominator.
\frac{11}{6}\times \frac{9}{2}+2^{4}
Divide \frac{11}{6} by \frac{2}{9} by multiplying \frac{11}{6} by the reciprocal of \frac{2}{9}.
\frac{33}{4}+2^{4}
Multiply \frac{11}{6} and \frac{9}{2} to get \frac{33}{4}.
\frac{33}{4}+16
Calculate 2 to the power of 4 and get 16.
\frac{97}{4}
Add \frac{33}{4} and 16 to get \frac{97}{4}.