Evaluate
-\frac{4\sqrt{3}}{9}+1\approx 0.230199641
Share
Copied to clipboard
\frac{\frac{\sqrt{3}}{2}\cos(30)-\tan(30)}{\tan(45)-\cos(60)\sin(30)}
Get the value of \sin(60) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}-\tan(30)}{\tan(45)-\cos(60)\sin(30)}
Get the value of \cos(30) from trigonometric values table.
\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}-\tan(30)}{\tan(45)-\cos(60)\sin(30)}
Multiply \frac{\sqrt{3}}{2} and \frac{\sqrt{3}}{2} to get \left(\frac{\sqrt{3}}{2}\right)^{2}.
\frac{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\tan(30)}{\tan(45)-\cos(60)\sin(30)}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\sqrt{3}}{3}}{\tan(45)-\cos(60)\sin(30)}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{3\left(\sqrt{3}\right)^{2}}{12}-\frac{4\sqrt{3}}{12}}{\tan(45)-\cos(60)\sin(30)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2^{2} and 3 is 12. Multiply \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{4}{4}.
\frac{\frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12}}{\tan(45)-\cos(60)\sin(30)}
Since \frac{3\left(\sqrt{3}\right)^{2}}{12} and \frac{4\sqrt{3}}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12}}{1-\cos(60)\sin(30)}
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12}}{1-\frac{1}{2}\sin(30)}
Get the value of \cos(60) from trigonometric values table.
\frac{\frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12}}{1-\frac{1}{2}\times \frac{1}{2}}
Get the value of \sin(30) from trigonometric values table.
\frac{\frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12}}{1-\frac{1}{4}}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\frac{\frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12}}{\frac{3}{4}}
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
\frac{\left(3\left(\sqrt{3}\right)^{2}-4\sqrt{3}\right)\times 4}{12\times 3}
Divide \frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12} by \frac{3}{4} by multiplying \frac{3\left(\sqrt{3}\right)^{2}-4\sqrt{3}}{12} by the reciprocal of \frac{3}{4}.
\frac{-4\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3\times 3}
Cancel out 4 in both numerator and denominator.
\frac{-4\sqrt{3}+3\times 3}{3\times 3}
The square of \sqrt{3} is 3.
\frac{-4\sqrt{3}+9}{3\times 3}
Multiply 3 and 3 to get 9.
\frac{-4\sqrt{3}+9}{9}
Multiply 3 and 3 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}