Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\sqrt{3}}{2}}{\cos(45)-\sin(30)}+\tan(60)+1-1
Get the value of \sin(60) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}-\sin(30)}+\tan(60)+1-1
Get the value of \cos(45) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}-\frac{1}{2}}+\tan(60)+1-1
Get the value of \sin(30) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}-1}{2}}+\tan(60)+1-1
Since \frac{\sqrt{2}}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{3}\times 2}{2\left(\sqrt{2}-1\right)}+\tan(60)+1-1
Divide \frac{\sqrt{3}}{2} by \frac{\sqrt{2}-1}{2} by multiplying \frac{\sqrt{3}}{2} by the reciprocal of \frac{\sqrt{2}-1}{2}.
\frac{\sqrt{3}}{\sqrt{2}-1}+\tan(60)+1-1
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\tan(60)+1-1
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}+\tan(60)+1-1
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{2-1}+\tan(60)+1-1
Square \sqrt{2}. Square 1.
\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{1}+\tan(60)+1-1
Subtract 1 from 2 to get 1.
\sqrt{3}\left(\sqrt{2}+1\right)+\tan(60)+1-1
Anything divided by one gives itself.
\sqrt{3}\left(\sqrt{2}+1\right)+\sqrt{3}+1-1
Get the value of \tan(60) from trigonometric values table.
\sqrt{3}\left(\sqrt{2}+1\right)+\sqrt{3}
Subtract 1 from 1 to get 0.
\sqrt{3}\sqrt{2}+\sqrt{3}+\sqrt{3}
Use the distributive property to multiply \sqrt{3} by \sqrt{2}+1.
\sqrt{6}+\sqrt{3}+\sqrt{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{6}+2\sqrt{3}
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.