Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-1}{x-2}\times \frac{\left(x-2\right)\left(x-4\right)}{\left(x-1\right)\left(x+2\right)}
Cancel out x+4 in both numerator and denominator.
\frac{x-1}{x-2}\times \frac{x^{2}-4x-2x+8}{\left(x-1\right)\left(x+2\right)}
Apply the distributive property by multiplying each term of x-2 by each term of x-4.
\frac{x-1}{x-2}\times \frac{x^{2}-6x+8}{\left(x-1\right)\left(x+2\right)}
Combine -4x and -2x to get -6x.
\frac{x-1}{x-2}\times \frac{x^{2}-6x+8}{x^{2}+2x-x-2}
Apply the distributive property by multiplying each term of x-1 by each term of x+2.
\frac{x-1}{x-2}\times \frac{x^{2}-6x+8}{x^{2}+x-2}
Combine 2x and -x to get x.
\frac{\left(x-1\right)\left(x^{2}-6x+8\right)}{\left(x-2\right)\left(x^{2}+x-2\right)}
Multiply \frac{x-1}{x-2} times \frac{x^{2}-6x+8}{x^{2}+x-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-4\right)\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x-4}{x+2}
Cancel out \left(x-2\right)\left(x-1\right) in both numerator and denominator.
\frac{x-1}{x-2}\times \frac{\left(x-2\right)\left(x-4\right)}{\left(x-1\right)\left(x+2\right)}
Cancel out x+4 in both numerator and denominator.
\frac{x-1}{x-2}\times \frac{x^{2}-4x-2x+8}{\left(x-1\right)\left(x+2\right)}
Apply the distributive property by multiplying each term of x-2 by each term of x-4.
\frac{x-1}{x-2}\times \frac{x^{2}-6x+8}{\left(x-1\right)\left(x+2\right)}
Combine -4x and -2x to get -6x.
\frac{x-1}{x-2}\times \frac{x^{2}-6x+8}{x^{2}+2x-x-2}
Apply the distributive property by multiplying each term of x-1 by each term of x+2.
\frac{x-1}{x-2}\times \frac{x^{2}-6x+8}{x^{2}+x-2}
Combine 2x and -x to get x.
\frac{\left(x-1\right)\left(x^{2}-6x+8\right)}{\left(x-2\right)\left(x^{2}+x-2\right)}
Multiply \frac{x-1}{x-2} times \frac{x^{2}-6x+8}{x^{2}+x-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-4\right)\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{x-4}{x+2}
Cancel out \left(x-2\right)\left(x-1\right) in both numerator and denominator.