Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-\sqrt{8}\right)}{\left(\sqrt{48}\right)^{2}-\left(\sqrt{8}\right)^{2}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{48}\right)^{2}-\left(\sqrt{8}\right)^{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-2\sqrt{2}\right)}{48-\left(\sqrt{8}\right)^{2}}
The square of \sqrt{48} is 48.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-2\sqrt{2}\right)}{48-8}
The square of \sqrt{8} is 8.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-2\sqrt{2}\right)}{40}
Subtract 8 from 48 to get 40.
\frac{28\left(\sqrt{3}\right)^{2}-34\sqrt{3}\sqrt{2}+10\left(\sqrt{2}\right)^{2}}{40}
Use the distributive property to multiply 7\sqrt{3}-5\sqrt{2} by 4\sqrt{3}-2\sqrt{2} and combine like terms.
\frac{28\times 3-34\sqrt{3}\sqrt{2}+10\left(\sqrt{2}\right)^{2}}{40}
The square of \sqrt{3} is 3.
\frac{84-34\sqrt{3}\sqrt{2}+10\left(\sqrt{2}\right)^{2}}{40}
Multiply 28 and 3 to get 84.
\frac{84-34\sqrt{6}+10\left(\sqrt{2}\right)^{2}}{40}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{84-34\sqrt{6}+10\times 2}{40}
The square of \sqrt{2} is 2.
\frac{84-34\sqrt{6}+20}{40}
Multiply 10 and 2 to get 20.
\frac{104-34\sqrt{6}}{40}
Add 84 and 20 to get 104.