Evaluate
\frac{180}{29}+\frac{160}{29}i\approx 6.206896552+5.517241379i
Real Part
\frac{180}{29} = 6\frac{6}{29} = 6.206896551724138
Share
Copied to clipboard
\frac{5\times 20+10i\times 20}{5+10i+20}
Multiply 5+10i times 20.
\frac{100+200i}{5+10i+20}
Do the multiplications in 5\times 20+10i\times 20.
\frac{100+200i}{5+20+10i}
Combine the real and imaginary parts in numbers 5+10i and 20.
\frac{100+200i}{25+10i}
Add 5 to 20.
\frac{\left(100+200i\right)\left(25-10i\right)}{\left(25+10i\right)\left(25-10i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 25-10i.
\frac{\left(100+200i\right)\left(25-10i\right)}{25^{2}-10^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(100+200i\right)\left(25-10i\right)}{725}
By definition, i^{2} is -1. Calculate the denominator.
\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)i^{2}}{725}
Multiply complex numbers 100+200i and 25-10i like you multiply binomials.
\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right)}{725}
By definition, i^{2} is -1.
\frac{2500-1000i+5000i+2000}{725}
Do the multiplications in 100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right).
\frac{2500+2000+\left(-1000+5000\right)i}{725}
Combine the real and imaginary parts in 2500-1000i+5000i+2000.
\frac{4500+4000i}{725}
Do the additions in 2500+2000+\left(-1000+5000\right)i.
\frac{180}{29}+\frac{160}{29}i
Divide 4500+4000i by 725 to get \frac{180}{29}+\frac{160}{29}i.
Re(\frac{5\times 20+10i\times 20}{5+10i+20})
Multiply 5+10i times 20.
Re(\frac{100+200i}{5+10i+20})
Do the multiplications in 5\times 20+10i\times 20.
Re(\frac{100+200i}{5+20+10i})
Combine the real and imaginary parts in numbers 5+10i and 20.
Re(\frac{100+200i}{25+10i})
Add 5 to 20.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{\left(25+10i\right)\left(25-10i\right)})
Multiply both numerator and denominator of \frac{100+200i}{25+10i} by the complex conjugate of the denominator, 25-10i.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{25^{2}-10^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(100+200i\right)\left(25-10i\right)}{725})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)i^{2}}{725})
Multiply complex numbers 100+200i and 25-10i like you multiply binomials.
Re(\frac{100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right)}{725})
By definition, i^{2} is -1.
Re(\frac{2500-1000i+5000i+2000}{725})
Do the multiplications in 100\times 25+100\times \left(-10i\right)+200i\times 25+200\left(-10\right)\left(-1\right).
Re(\frac{2500+2000+\left(-1000+5000\right)i}{725})
Combine the real and imaginary parts in 2500-1000i+5000i+2000.
Re(\frac{4500+4000i}{725})
Do the additions in 2500+2000+\left(-1000+5000\right)i.
Re(\frac{180}{29}+\frac{160}{29}i)
Divide 4500+4000i by 725 to get \frac{180}{29}+\frac{160}{29}i.
\frac{180}{29}
The real part of \frac{180}{29}+\frac{160}{29}i is \frac{180}{29}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}