Solve for m
m=\sqrt{197}+13\approx 27.035668848
m=13-\sqrt{197}\approx -1.035668848
Share
Copied to clipboard
\left(2+m\right)m=\left(m+1\right)\left(0\times 22m+1\times 28\right)
Variable m cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(m+1\right)^{2}, the least common multiple of \left(1+m\right)^{2},m+1.
2m+m^{2}=\left(m+1\right)\left(0\times 22m+1\times 28\right)
Use the distributive property to multiply 2+m by m.
2m+m^{2}=\left(m+1\right)\left(0m+28\right)
Do the multiplications.
2m+m^{2}=\left(m+1\right)\left(0+28\right)
Anything times zero gives zero.
2m+m^{2}=\left(m+1\right)\times 28
Add 0 and 28 to get 28.
2m+m^{2}=28m+28
Use the distributive property to multiply m+1 by 28.
2m+m^{2}-28m=28
Subtract 28m from both sides.
-26m+m^{2}=28
Combine 2m and -28m to get -26m.
-26m+m^{2}-28=0
Subtract 28 from both sides.
m^{2}-26m-28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-28\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -26 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-26\right)±\sqrt{676-4\left(-28\right)}}{2}
Square -26.
m=\frac{-\left(-26\right)±\sqrt{676+112}}{2}
Multiply -4 times -28.
m=\frac{-\left(-26\right)±\sqrt{788}}{2}
Add 676 to 112.
m=\frac{-\left(-26\right)±2\sqrt{197}}{2}
Take the square root of 788.
m=\frac{26±2\sqrt{197}}{2}
The opposite of -26 is 26.
m=\frac{2\sqrt{197}+26}{2}
Now solve the equation m=\frac{26±2\sqrt{197}}{2} when ± is plus. Add 26 to 2\sqrt{197}.
m=\sqrt{197}+13
Divide 26+2\sqrt{197} by 2.
m=\frac{26-2\sqrt{197}}{2}
Now solve the equation m=\frac{26±2\sqrt{197}}{2} when ± is minus. Subtract 2\sqrt{197} from 26.
m=13-\sqrt{197}
Divide 26-2\sqrt{197} by 2.
m=\sqrt{197}+13 m=13-\sqrt{197}
The equation is now solved.
\left(2+m\right)m=\left(m+1\right)\left(0\times 22m+1\times 28\right)
Variable m cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(m+1\right)^{2}, the least common multiple of \left(1+m\right)^{2},m+1.
2m+m^{2}=\left(m+1\right)\left(0\times 22m+1\times 28\right)
Use the distributive property to multiply 2+m by m.
2m+m^{2}=\left(m+1\right)\left(0m+28\right)
Do the multiplications.
2m+m^{2}=\left(m+1\right)\left(0+28\right)
Anything times zero gives zero.
2m+m^{2}=\left(m+1\right)\times 28
Add 0 and 28 to get 28.
2m+m^{2}=28m+28
Use the distributive property to multiply m+1 by 28.
2m+m^{2}-28m=28
Subtract 28m from both sides.
-26m+m^{2}=28
Combine 2m and -28m to get -26m.
m^{2}-26m=28
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-26m+\left(-13\right)^{2}=28+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-26m+169=28+169
Square -13.
m^{2}-26m+169=197
Add 28 to 169.
\left(m-13\right)^{2}=197
Factor m^{2}-26m+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-13\right)^{2}}=\sqrt{197}
Take the square root of both sides of the equation.
m-13=\sqrt{197} m-13=-\sqrt{197}
Simplify.
m=\sqrt{197}+13 m=13-\sqrt{197}
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}