Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i}
Multiply complex numbers 130+5915i and 30+1365i like you multiply binomials.
\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i}
By definition, i^{2} is -1.
\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i}
Do the multiplications in 130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right).
\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i}
Combine the real and imaginary parts in 3900+177450i+177450i-8073975.
\frac{-8070075+354900i}{130+5915i+30+1365i}
Do the additions in 3900-8073975+\left(177450+177450\right)i.
\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i}
Combine the real and imaginary parts in 130+5915i+30+1365i.
\frac{-8070075+354900i}{160+7280i}
Do the additions in 130+30+\left(5915+1365\right)i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 160-7280i.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000}
Multiply complex numbers -8070075+354900i and 160-7280i like you multiply binomials.
\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000}
By definition, i^{2} is -1.
\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000}
Do the multiplications in -8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right).
\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000}
Combine the real and imaginary parts in -1291212000+58750146000i+56784000i+2583672000.
\frac{1292460000+58806930000i}{53024000}
Do the additions in -1291212000+2583672000+\left(58750146000+56784000\right)i.
\frac{195}{8}+\frac{17745}{16}i
Divide 1292460000+58806930000i by 53024000 to get \frac{195}{8}+\frac{17745}{16}i.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365i^{2}}{130+5915i+30+1365i})
Multiply complex numbers 130+5915i and 30+1365i like you multiply binomials.
Re(\frac{130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right)}{130+5915i+30+1365i})
By definition, i^{2} is -1.
Re(\frac{3900+177450i+177450i-8073975}{130+5915i+30+1365i})
Do the multiplications in 130\times 30+130\times \left(1365i\right)+5915i\times 30+5915\times 1365\left(-1\right).
Re(\frac{3900-8073975+\left(177450+177450\right)i}{130+5915i+30+1365i})
Combine the real and imaginary parts in 3900+177450i+177450i-8073975.
Re(\frac{-8070075+354900i}{130+5915i+30+1365i})
Do the additions in 3900-8073975+\left(177450+177450\right)i.
Re(\frac{-8070075+354900i}{130+30+\left(5915+1365\right)i})
Combine the real and imaginary parts in 130+5915i+30+1365i.
Re(\frac{-8070075+354900i}{160+7280i})
Do the additions in 130+30+\left(5915+1365\right)i.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{\left(160+7280i\right)\left(160-7280i\right)})
Multiply both numerator and denominator of \frac{-8070075+354900i}{160+7280i} by the complex conjugate of the denominator, 160-7280i.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{160^{2}-7280^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-8070075+354900i\right)\left(160-7280i\right)}{53024000})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)i^{2}}{53024000})
Multiply complex numbers -8070075+354900i and 160-7280i like you multiply binomials.
Re(\frac{-8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right)}{53024000})
By definition, i^{2} is -1.
Re(\frac{-1291212000+58750146000i+56784000i+2583672000}{53024000})
Do the multiplications in -8070075\times 160-8070075\times \left(-7280i\right)+354900i\times 160+354900\left(-7280\right)\left(-1\right).
Re(\frac{-1291212000+2583672000+\left(58750146000+56784000\right)i}{53024000})
Combine the real and imaginary parts in -1291212000+58750146000i+56784000i+2583672000.
Re(\frac{1292460000+58806930000i}{53024000})
Do the additions in -1291212000+2583672000+\left(58750146000+56784000\right)i.
Re(\frac{195}{8}+\frac{17745}{16}i)
Divide 1292460000+58806930000i by 53024000 to get \frac{195}{8}+\frac{17745}{16}i.
\frac{195}{8}
The real part of \frac{195}{8}+\frac{17745}{16}i is \frac{195}{8}.