Evaluate
\sqrt{3}\approx 1.732050808
Share
Copied to clipboard
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}}{\sqrt{6}}+\sqrt{6}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}+\sqrt{6}
Rationalize the denominator of \frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}\sqrt{6}}{6}+\sqrt{6}
The square of \sqrt{6} is 6.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\sqrt{3}\sqrt{3}\sqrt{2}}{6}+\sqrt{6}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{\left(\sqrt{6}-2\sqrt{3}\right)\times 3\sqrt{2}}{6}+\sqrt{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\left(\sqrt{6}-2\sqrt{3}\right)\times \frac{1}{2}\sqrt{2}+\sqrt{6}
Divide \left(\sqrt{6}-2\sqrt{3}\right)\times 3\sqrt{2} by 6 to get \left(\sqrt{6}-2\sqrt{3}\right)\times \frac{1}{2}\sqrt{2}.
\left(\sqrt{6}\times \frac{1}{2}-2\sqrt{3}\times \frac{1}{2}\right)\sqrt{2}+\sqrt{6}
Use the distributive property to multiply \sqrt{6}-2\sqrt{3} by \frac{1}{2}.
\left(\sqrt{6}\times \frac{1}{2}-\sqrt{3}\right)\sqrt{2}+\sqrt{6}
Multiply -2 times \frac{1}{2}.
\sqrt{6}\times \frac{1}{2}\sqrt{2}-\sqrt{3}\sqrt{2}+\sqrt{6}
Use the distributive property to multiply \sqrt{6}\times \frac{1}{2}-\sqrt{3} by \sqrt{2}.
\sqrt{2}\sqrt{3}\times \frac{1}{2}\sqrt{2}-\sqrt{3}\sqrt{2}+\sqrt{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\times \frac{1}{2}\sqrt{3}-\sqrt{3}\sqrt{2}+\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{3}-\sqrt{3}\sqrt{2}+\sqrt{6}
Cancel out 2 and 2.
\sqrt{3}-\sqrt{6}+\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{3}
Combine -\sqrt{6} and \sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}