Evaluate
\frac{7\sqrt{21}}{2}\approx 16.039014932
Share
Copied to clipboard
\frac{\frac{7+\sqrt{21}+7-\sqrt{21}}{2}\left(\frac{7+\sqrt{21}}{2}-\frac{7-\sqrt{21}}{2}\right)}{2}
Since \frac{7+\sqrt{21}}{2} and \frac{7-\sqrt{21}}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{14}{2}\left(\frac{7+\sqrt{21}}{2}-\frac{7-\sqrt{21}}{2}\right)}{2}
Do the calculations in 7+\sqrt{21}+7-\sqrt{21}.
\frac{\frac{14}{2}\times \frac{7+\sqrt{21}-\left(7-\sqrt{21}\right)}{2}}{2}
Since \frac{7+\sqrt{21}}{2} and \frac{7-\sqrt{21}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14}{2}\times \frac{7+\sqrt{21}-7+\sqrt{21}}{2}}{2}
Do the multiplications in 7+\sqrt{21}-\left(7-\sqrt{21}\right).
\frac{\frac{14}{2}\times \frac{2\sqrt{21}}{2}}{2}
Do the calculations in 7+\sqrt{21}-7+\sqrt{21}.
\frac{\frac{14}{2}\sqrt{21}}{2}
Cancel out 2 and 2.
\frac{\frac{14\sqrt{21}}{2}}{2}
Express \frac{14}{2}\sqrt{21} as a single fraction.
\frac{14\sqrt{21}}{2\times 2}
Express \frac{\frac{14\sqrt{21}}{2}}{2} as a single fraction.
\frac{7\sqrt{21}}{2}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}