Evaluate
\frac{17}{50}=0.34
Factor
\frac{17}{2 \cdot 5 ^ {2}} = 0.34
Share
Copied to clipboard
\frac{\frac{25}{40}-\frac{8}{40}}{\frac{1\times 4+1}{4}}
Least common multiple of 8 and 5 is 40. Convert \frac{5}{8} and \frac{1}{5} to fractions with denominator 40.
\frac{\frac{25-8}{40}}{\frac{1\times 4+1}{4}}
Since \frac{25}{40} and \frac{8}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{17}{40}}{\frac{1\times 4+1}{4}}
Subtract 8 from 25 to get 17.
\frac{\frac{17}{40}}{\frac{4+1}{4}}
Multiply 1 and 4 to get 4.
\frac{\frac{17}{40}}{\frac{5}{4}}
Add 4 and 1 to get 5.
\frac{17}{40}\times \frac{4}{5}
Divide \frac{17}{40} by \frac{5}{4} by multiplying \frac{17}{40} by the reciprocal of \frac{5}{4}.
\frac{17\times 4}{40\times 5}
Multiply \frac{17}{40} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{68}{200}
Do the multiplications in the fraction \frac{17\times 4}{40\times 5}.
\frac{17}{50}
Reduce the fraction \frac{68}{200} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}