\frac{ \left| 3a+4 \right| }{ \sqrt{ { \left( \frac{ a-2 }{ 3 } \right) }^{ 2 } + { a }^{ 2 } +b } } = \frac{ \sqrt{ \frac{ 2 }{ 1 } } }{ }
Solve for a
\left\{\begin{matrix}a=\frac{3\sqrt{122b+472}-112}{61}\text{, }&\left(b\geq -\frac{236}{61}\text{ and }\frac{3\sqrt{122b+472}}{61}+\frac{3\sqrt{-10b-4}}{10}\leq \frac{621}{305}\text{ and }b<-\frac{244}{81}\right)\text{ or }b>-\frac{2}{5}\text{ or }\left(\frac{3\sqrt{122b+472}-112}{61}\geq \frac{\sqrt{-360b-144}}{20}+\frac{1}{5}\text{ and }\frac{3\sqrt{122b+472}-112}{61}\geq \frac{3\sqrt{9\left(-\frac{40b}{9}\right)-16}}{20}+\frac{1}{5}\text{ and }\frac{3\sqrt{122b+472}-112}{61}>\frac{3\sqrt{-10b-4}}{10}+\frac{1}{5}\text{ and }\frac{3\sqrt{122b+472}}{61}+\frac{3\sqrt{-10b-4}}{10}\leq \frac{621}{305}\text{ and }b<-\frac{2}{5}\text{ and }b>-\frac{244}{81}\right)\text{ or }\left(\frac{3\sqrt{122b+472}-112}{61}\geq \frac{\sqrt{-360b-144}}{20}+\frac{1}{5}\text{ and }\frac{3\sqrt{122b+472}-112}{61}\geq \frac{3\sqrt{9\left(-\frac{40b}{9}\right)-16}}{20}+\frac{1}{5}\text{ and }\frac{3\sqrt{122b+472}-112}{61}>\frac{3\sqrt{-10b-4}}{10}+\frac{1}{5}\text{ and }\frac{3\sqrt{122b+472}}{61}-\frac{3\sqrt{-10b-4}}{10}\geq \frac{621}{305}\text{ and }b<-\frac{2}{5}\text{ and }b>-\frac{244}{81}\right)\text{ or }\left(b\leq -\frac{2}{5}\text{ and }\frac{3\sqrt{122b+472}}{61}-\frac{3\sqrt{-10b-4}}{10}\geq \frac{621}{305}\text{ and }b>-\frac{244}{81}\right)\text{ or }\left(b\leq -\frac{2}{5}\text{ and }\frac{3\sqrt{122b+472}}{61}+\frac{3\sqrt{-10b-4}}{10}\leq \frac{621}{305}\text{ and }b>-\frac{244}{81}\right)\\a=\frac{-3\sqrt{122b+472}-112}{61}\text{, }&\left(-\frac{3\sqrt{122b+472}}{61}+\frac{3\sqrt{-10b-4}}{10}\leq \frac{621}{305}\text{ or }b>-\frac{244}{81}\right)\text{ and }b\geq -\frac{236}{61}\text{ and }\left(b>-\frac{2}{5}\text{ or }-\frac{3\sqrt{122b+472}}{61}+\frac{3\sqrt{-10b-4}}{10}\leq \frac{621}{305}\right)\end{matrix}\right.
Solve for b
b=\frac{61a^{2}}{18}+\frac{112a}{9}+\frac{68}{9}
a\neq -\frac{4}{3}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}