Evaluate
\frac{3\sqrt{2}}{4}\approx 1.060660172
Share
Copied to clipboard
\frac{|4-6-1|}{\sqrt{2^{2}+2^{2}}}
Multiply 2 and 2 to get 4. Multiply 2 and -3 to get -6.
\frac{|-2-1|}{\sqrt{2^{2}+2^{2}}}
Subtract 6 from 4 to get -2.
\frac{|-3|}{\sqrt{2^{2}+2^{2}}}
Subtract 1 from -2 to get -3.
\frac{3}{\sqrt{2^{2}+2^{2}}}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -3 is 3.
\frac{3}{\sqrt{4+2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{3}{\sqrt{4+4}}
Calculate 2 to the power of 2 and get 4.
\frac{3}{\sqrt{8}}
Add 4 and 4 to get 8.
\frac{3}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{3\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{3\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}