Evaluate
12
Factor
3\times 2^{2}
Share
Copied to clipboard
\frac{0.15}{|-0.15|+|-0.1|}\times 20
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -0.15 is 0.15.
\frac{0.15}{0.15+|-0.1|}\times 20
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -0.15 is 0.15.
\frac{0.15}{0.15+0.1}\times 20
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -0.1 is 0.1.
\frac{0.15}{0.25}\times 20
Add 0.15 and 0.1 to get 0.25.
\frac{15}{25}\times 20
Expand \frac{0.15}{0.25} by multiplying both numerator and the denominator by 100.
\frac{3}{5}\times 20
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
\frac{3\times 20}{5}
Express \frac{3}{5}\times 20 as a single fraction.
\frac{60}{5}
Multiply 3 and 20 to get 60.
12
Divide 60 by 5 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}