Evaluate
\frac{2}{y}
Expand
\frac{2}{y}
Share
Copied to clipboard
\frac{\frac{x-2y}{x\left(x+2y\right)}-\frac{x+2y}{x\left(x-2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Factor x^{2}+2xy. Factor x^{2}-2xy.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)}-\frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2y\right) and x\left(x-2y\right) is x\left(x-2y\right)\left(x+2y\right). Multiply \frac{x-2y}{x\left(x+2y\right)} times \frac{x-2y}{x-2y}. Multiply \frac{x+2y}{x\left(x-2y\right)} times \frac{x+2y}{x+2y}.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Since \frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)} and \frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Do the multiplications in \left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right).
\frac{\frac{-8xy}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Combine like terms in x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}.
\frac{\frac{-8y}{\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Cancel out x in both numerator and denominator.
\frac{-8y\left(4y^{2}-x^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4y^{2}}
Divide \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by \frac{4y^{2}}{4y^{2}-x^{2}} by multiplying \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by the reciprocal of \frac{4y^{2}}{4y^{2}-x^{2}}.
\frac{-2\left(-x^{2}+4y^{2}\right)}{y\left(x-2y\right)\left(x+2y\right)}
Cancel out 4y in both numerator and denominator.
\frac{-2\left(x-2y\right)\left(-x-2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Factor the expressions that are not already factored.
\frac{-2\left(-1\right)\left(x-2y\right)\left(x+2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Extract the negative sign in -x-2y.
\frac{-2\left(-1\right)}{y}
Cancel out \left(x-2y\right)\left(x+2y\right) in both numerator and denominator.
\frac{2}{y}
Expand the expression.
\frac{\frac{x-2y}{x\left(x+2y\right)}-\frac{x+2y}{x\left(x-2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Factor x^{2}+2xy. Factor x^{2}-2xy.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)}-\frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2y\right) and x\left(x-2y\right) is x\left(x-2y\right)\left(x+2y\right). Multiply \frac{x-2y}{x\left(x+2y\right)} times \frac{x-2y}{x-2y}. Multiply \frac{x+2y}{x\left(x-2y\right)} times \frac{x+2y}{x+2y}.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Since \frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)} and \frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Do the multiplications in \left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right).
\frac{\frac{-8xy}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Combine like terms in x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}.
\frac{\frac{-8y}{\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Cancel out x in both numerator and denominator.
\frac{-8y\left(4y^{2}-x^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4y^{2}}
Divide \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by \frac{4y^{2}}{4y^{2}-x^{2}} by multiplying \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by the reciprocal of \frac{4y^{2}}{4y^{2}-x^{2}}.
\frac{-2\left(-x^{2}+4y^{2}\right)}{y\left(x-2y\right)\left(x+2y\right)}
Cancel out 4y in both numerator and denominator.
\frac{-2\left(x-2y\right)\left(-x-2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Factor the expressions that are not already factored.
\frac{-2\left(-1\right)\left(x-2y\right)\left(x+2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Extract the negative sign in -x-2y.
\frac{-2\left(-1\right)}{y}
Cancel out \left(x-2y\right)\left(x+2y\right) in both numerator and denominator.
\frac{2}{y}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}