Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{x-2y}{x\left(x+2y\right)}-\frac{x+2y}{x\left(x-2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Factor x^{2}+2xy. Factor x^{2}-2xy.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)}-\frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2y\right) and x\left(x-2y\right) is x\left(x-2y\right)\left(x+2y\right). Multiply \frac{x-2y}{x\left(x+2y\right)} times \frac{x-2y}{x-2y}. Multiply \frac{x+2y}{x\left(x-2y\right)} times \frac{x+2y}{x+2y}.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Since \frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)} and \frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Do the multiplications in \left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right).
\frac{\frac{-8xy}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Combine like terms in x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}.
\frac{\frac{-8y}{\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Cancel out x in both numerator and denominator.
\frac{-8y\left(4y^{2}-x^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4y^{2}}
Divide \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by \frac{4y^{2}}{4y^{2}-x^{2}} by multiplying \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by the reciprocal of \frac{4y^{2}}{4y^{2}-x^{2}}.
\frac{-2\left(-x^{2}+4y^{2}\right)}{y\left(x-2y\right)\left(x+2y\right)}
Cancel out 4y in both numerator and denominator.
\frac{-2\left(x-2y\right)\left(-x-2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Factor the expressions that are not already factored.
\frac{-2\left(-1\right)\left(x-2y\right)\left(x+2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Extract the negative sign in -x-2y.
\frac{-2\left(-1\right)}{y}
Cancel out \left(x-2y\right)\left(x+2y\right) in both numerator and denominator.
\frac{2}{y}
Expand the expression.
\frac{\frac{x-2y}{x\left(x+2y\right)}-\frac{x+2y}{x\left(x-2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Factor x^{2}+2xy. Factor x^{2}-2xy.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)}-\frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+2y\right) and x\left(x-2y\right) is x\left(x-2y\right)\left(x+2y\right). Multiply \frac{x-2y}{x\left(x+2y\right)} times \frac{x-2y}{x-2y}. Multiply \frac{x+2y}{x\left(x-2y\right)} times \frac{x+2y}{x+2y}.
\frac{\frac{\left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Since \frac{\left(x-2y\right)\left(x-2y\right)}{x\left(x-2y\right)\left(x+2y\right)} and \frac{\left(x+2y\right)\left(x+2y\right)}{x\left(x-2y\right)\left(x+2y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Do the multiplications in \left(x-2y\right)\left(x-2y\right)-\left(x+2y\right)\left(x+2y\right).
\frac{\frac{-8xy}{x\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Combine like terms in x^{2}-2xy-2xy+4y^{2}-x^{2}-2xy-2xy-4y^{2}.
\frac{\frac{-8y}{\left(x-2y\right)\left(x+2y\right)}}{\frac{4y^{2}}{4y^{2}-x^{2}}}
Cancel out x in both numerator and denominator.
\frac{-8y\left(4y^{2}-x^{2}\right)}{\left(x-2y\right)\left(x+2y\right)\times 4y^{2}}
Divide \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by \frac{4y^{2}}{4y^{2}-x^{2}} by multiplying \frac{-8y}{\left(x-2y\right)\left(x+2y\right)} by the reciprocal of \frac{4y^{2}}{4y^{2}-x^{2}}.
\frac{-2\left(-x^{2}+4y^{2}\right)}{y\left(x-2y\right)\left(x+2y\right)}
Cancel out 4y in both numerator and denominator.
\frac{-2\left(x-2y\right)\left(-x-2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Factor the expressions that are not already factored.
\frac{-2\left(-1\right)\left(x-2y\right)\left(x+2y\right)}{y\left(x-2y\right)\left(x+2y\right)}
Extract the negative sign in -x-2y.
\frac{-2\left(-1\right)}{y}
Cancel out \left(x-2y\right)\left(x+2y\right) in both numerator and denominator.
\frac{2}{y}
Expand the expression.