Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+1}{x}}{\frac{x+1}{x}+\frac{x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{x+1}{x}}{\frac{x+1+x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Since \frac{x+1}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{x+1}{x}}{\frac{2x+1}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Combine like terms in x+1+x.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Divide \frac{x+1}{x} by \frac{2x+1}{x} by multiplying \frac{x+1}{x} by the reciprocal of \frac{2x+1}{x}.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Cancel out x in both numerator and denominator.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+\frac{x+1}{x+1}}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+1}{x+1}.
\frac{x+1}{2x+1}-\frac{\frac{x+x+1}{x+1}}{\frac{x}{x+1}}
Since \frac{x}{x+1} and \frac{x+1}{x+1} have the same denominator, add them by adding their numerators.
\frac{x+1}{2x+1}-\frac{\frac{2x+1}{x+1}}{\frac{x}{x+1}}
Combine like terms in x+x+1.
\frac{x+1}{2x+1}-\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)x}
Divide \frac{2x+1}{x+1} by \frac{x}{x+1} by multiplying \frac{2x+1}{x+1} by the reciprocal of \frac{x}{x+1}.
\frac{x+1}{2x+1}-\frac{2x+1}{x}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and x is x\left(2x+1\right). Multiply \frac{x+1}{2x+1} times \frac{x}{x}. Multiply \frac{2x+1}{x} times \frac{2x+1}{2x+1}.
\frac{\left(x+1\right)x-\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
Since \frac{\left(x+1\right)x}{x\left(2x+1\right)} and \frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-4x^{2}-2x-2x-1}{x\left(2x+1\right)}
Do the multiplications in \left(x+1\right)x-\left(2x+1\right)\left(2x+1\right).
\frac{-3x^{2}-3x-1}{x\left(2x+1\right)}
Combine like terms in x^{2}+x-4x^{2}-2x-2x-1.
\frac{-3x^{2}-3x-1}{2x^{2}+x}
Expand x\left(2x+1\right).
\frac{\frac{x+1}{x}}{\frac{x+1}{x}+\frac{x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{x+1}{x}}{\frac{x+1+x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Since \frac{x+1}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{x+1}{x}}{\frac{2x+1}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Combine like terms in x+1+x.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Divide \frac{x+1}{x} by \frac{2x+1}{x} by multiplying \frac{x+1}{x} by the reciprocal of \frac{2x+1}{x}.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Cancel out x in both numerator and denominator.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+\frac{x+1}{x+1}}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+1}{x+1}.
\frac{x+1}{2x+1}-\frac{\frac{x+x+1}{x+1}}{\frac{x}{x+1}}
Since \frac{x}{x+1} and \frac{x+1}{x+1} have the same denominator, add them by adding their numerators.
\frac{x+1}{2x+1}-\frac{\frac{2x+1}{x+1}}{\frac{x}{x+1}}
Combine like terms in x+x+1.
\frac{x+1}{2x+1}-\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)x}
Divide \frac{2x+1}{x+1} by \frac{x}{x+1} by multiplying \frac{2x+1}{x+1} by the reciprocal of \frac{x}{x+1}.
\frac{x+1}{2x+1}-\frac{2x+1}{x}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and x is x\left(2x+1\right). Multiply \frac{x+1}{2x+1} times \frac{x}{x}. Multiply \frac{2x+1}{x} times \frac{2x+1}{2x+1}.
\frac{\left(x+1\right)x-\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
Since \frac{\left(x+1\right)x}{x\left(2x+1\right)} and \frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-4x^{2}-2x-2x-1}{x\left(2x+1\right)}
Do the multiplications in \left(x+1\right)x-\left(2x+1\right)\left(2x+1\right).
\frac{-3x^{2}-3x-1}{x\left(2x+1\right)}
Combine like terms in x^{2}+x-4x^{2}-2x-2x-1.
\frac{-3x^{2}-3x-1}{2x^{2}+x}
Expand x\left(2x+1\right).