Evaluate
-\frac{3x^{2}+3x+1}{x\left(2x+1\right)}
Expand
-\frac{3x^{2}+3x+1}{x\left(2x+1\right)}
Graph
Share
Copied to clipboard
\frac{\frac{x+1}{x}}{\frac{x+1}{x}+\frac{x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{x+1}{x}}{\frac{x+1+x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Since \frac{x+1}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{x+1}{x}}{\frac{2x+1}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Combine like terms in x+1+x.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Divide \frac{x+1}{x} by \frac{2x+1}{x} by multiplying \frac{x+1}{x} by the reciprocal of \frac{2x+1}{x}.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Cancel out x in both numerator and denominator.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+\frac{x+1}{x+1}}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+1}{x+1}.
\frac{x+1}{2x+1}-\frac{\frac{x+x+1}{x+1}}{\frac{x}{x+1}}
Since \frac{x}{x+1} and \frac{x+1}{x+1} have the same denominator, add them by adding their numerators.
\frac{x+1}{2x+1}-\frac{\frac{2x+1}{x+1}}{\frac{x}{x+1}}
Combine like terms in x+x+1.
\frac{x+1}{2x+1}-\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)x}
Divide \frac{2x+1}{x+1} by \frac{x}{x+1} by multiplying \frac{2x+1}{x+1} by the reciprocal of \frac{x}{x+1}.
\frac{x+1}{2x+1}-\frac{2x+1}{x}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and x is x\left(2x+1\right). Multiply \frac{x+1}{2x+1} times \frac{x}{x}. Multiply \frac{2x+1}{x} times \frac{2x+1}{2x+1}.
\frac{\left(x+1\right)x-\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
Since \frac{\left(x+1\right)x}{x\left(2x+1\right)} and \frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-4x^{2}-2x-2x-1}{x\left(2x+1\right)}
Do the multiplications in \left(x+1\right)x-\left(2x+1\right)\left(2x+1\right).
\frac{-3x^{2}-3x-1}{x\left(2x+1\right)}
Combine like terms in x^{2}+x-4x^{2}-2x-2x-1.
\frac{-3x^{2}-3x-1}{2x^{2}+x}
Expand x\left(2x+1\right).
\frac{\frac{x+1}{x}}{\frac{x+1}{x}+\frac{x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{x+1}{x}}{\frac{x+1+x}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Since \frac{x+1}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{x+1}{x}}{\frac{2x+1}{x}}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Combine like terms in x+1+x.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Divide \frac{x+1}{x} by \frac{2x+1}{x} by multiplying \frac{x+1}{x} by the reciprocal of \frac{2x+1}{x}.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+1}{\frac{x}{x+1}}
Cancel out x in both numerator and denominator.
\frac{x+1}{2x+1}-\frac{\frac{x}{x+1}+\frac{x+1}{x+1}}{\frac{x}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+1}{x+1}.
\frac{x+1}{2x+1}-\frac{\frac{x+x+1}{x+1}}{\frac{x}{x+1}}
Since \frac{x}{x+1} and \frac{x+1}{x+1} have the same denominator, add them by adding their numerators.
\frac{x+1}{2x+1}-\frac{\frac{2x+1}{x+1}}{\frac{x}{x+1}}
Combine like terms in x+x+1.
\frac{x+1}{2x+1}-\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+1\right)x}
Divide \frac{2x+1}{x+1} by \frac{x}{x+1} by multiplying \frac{2x+1}{x+1} by the reciprocal of \frac{x}{x+1}.
\frac{x+1}{2x+1}-\frac{2x+1}{x}
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)x}{x\left(2x+1\right)}-\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and x is x\left(2x+1\right). Multiply \frac{x+1}{2x+1} times \frac{x}{x}. Multiply \frac{2x+1}{x} times \frac{2x+1}{2x+1}.
\frac{\left(x+1\right)x-\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)}
Since \frac{\left(x+1\right)x}{x\left(2x+1\right)} and \frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+x-4x^{2}-2x-2x-1}{x\left(2x+1\right)}
Do the multiplications in \left(x+1\right)x-\left(2x+1\right)\left(2x+1\right).
\frac{-3x^{2}-3x-1}{x\left(2x+1\right)}
Combine like terms in x^{2}+x-4x^{2}-2x-2x-1.
\frac{-3x^{2}-3x-1}{2x^{2}+x}
Expand x\left(2x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}