Solve for x
x=-56
Graph
Share
Copied to clipboard
\frac{x}{35+x}=\frac{4}{3}\times 2
Multiply both sides by 2.
3x=\frac{4}{3}\times 2\times 3\left(x+35\right)
Variable x cannot be equal to -35 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+35\right), the least common multiple of 35+x,3.
3x=\frac{8}{3}\times 3\left(x+35\right)
Multiply \frac{4}{3} and 2 to get \frac{8}{3}.
3x=8\left(x+35\right)
Multiply \frac{8}{3} and 3 to get 8.
3x=8x+280
Use the distributive property to multiply 8 by x+35.
3x-8x=280
Subtract 8x from both sides.
-5x=280
Combine 3x and -8x to get -5x.
x=\frac{280}{-5}
Divide both sides by -5.
x=-56
Divide 280 by -5 to get -56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}