Solve for x
x = -\frac{1632}{11} = -148\frac{4}{11} \approx -148.363636364
Graph
Share
Copied to clipboard
\frac{x}{17}-144=2x+144
Multiply both sides of the equation by 6, the least common multiple of 6,3.
\frac{x}{17}-144-2x=144
Subtract 2x from both sides.
-\frac{33}{17}x-144=144
Combine \frac{x}{17} and -2x to get -\frac{33}{17}x.
-\frac{33}{17}x=144+144
Add 144 to both sides.
-\frac{33}{17}x=288
Add 144 and 144 to get 288.
x=288\left(-\frac{17}{33}\right)
Multiply both sides by -\frac{17}{33}, the reciprocal of -\frac{33}{17}.
x=\frac{288\left(-17\right)}{33}
Express 288\left(-\frac{17}{33}\right) as a single fraction.
x=\frac{-4896}{33}
Multiply 288 and -17 to get -4896.
x=-\frac{1632}{11}
Reduce the fraction \frac{-4896}{33} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}