Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

2\times \frac{n}{4}\left(2\times 10+\left(\frac{n}{4}-1\right)\times 20\right)=36000
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2\times \frac{n}{4}\left(20+\left(\frac{n}{4}-1\right)\times 20\right)=36000
Multiply 2 and 10 to get 20.
2\times \frac{n}{4}\left(20+20\times \frac{n}{4}-20\right)=36000
Use the distributive property to multiply \frac{n}{4}-1 by 20.
2\times \frac{n}{4}\left(20+5n-20\right)=36000
Cancel out 4, the greatest common factor in 20 and 4.
2\times \frac{n}{4}\times 5n=36000
Subtract 20 from 20 to get 0.
10\times \frac{n}{4}n=36000
Multiply 2 and 5 to get 10.
\frac{10n}{4}n=36000
Express 10\times \frac{n}{4} as a single fraction.
\frac{10nn}{4}=36000
Express \frac{10n}{4}n as a single fraction.
\frac{10n^{2}}{4}=36000
Multiply n and n to get n^{2}.
\frac{5}{2}n^{2}=36000
Divide 10n^{2} by 4 to get \frac{5}{2}n^{2}.
n^{2}=36000\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
n^{2}=\frac{36000\times 2}{5}
Express 36000\times \frac{2}{5} as a single fraction.
n^{2}=\frac{72000}{5}
Multiply 36000 and 2 to get 72000.
n^{2}=14400
Divide 72000 by 5 to get 14400.
n=120 n=-120
Take the square root of both sides of the equation.
2\times \frac{n}{4}\left(2\times 10+\left(\frac{n}{4}-1\right)\times 20\right)=36000
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2\times \frac{n}{4}\left(20+\left(\frac{n}{4}-1\right)\times 20\right)=36000
Multiply 2 and 10 to get 20.
2\times \frac{n}{4}\left(20+20\times \frac{n}{4}-20\right)=36000
Use the distributive property to multiply \frac{n}{4}-1 by 20.
2\times \frac{n}{4}\left(20+5n-20\right)=36000
Cancel out 4, the greatest common factor in 20 and 4.
2\times \frac{n}{4}\times 5n=36000
Subtract 20 from 20 to get 0.
10\times \frac{n}{4}n=36000
Multiply 2 and 5 to get 10.
\frac{10n}{4}n=36000
Express 10\times \frac{n}{4} as a single fraction.
\frac{10nn}{4}=36000
Express \frac{10n}{4}n as a single fraction.
\frac{10n^{2}}{4}=36000
Multiply n and n to get n^{2}.
\frac{5}{2}n^{2}=36000
Divide 10n^{2} by 4 to get \frac{5}{2}n^{2}.
\frac{5}{2}n^{2}-36000=0
Subtract 36000 from both sides.
n=\frac{0±\sqrt{0^{2}-4\times \frac{5}{2}\left(-36000\right)}}{2\times \frac{5}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{5}{2} for a, 0 for b, and -36000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times \frac{5}{2}\left(-36000\right)}}{2\times \frac{5}{2}}
Square 0.
n=\frac{0±\sqrt{-10\left(-36000\right)}}{2\times \frac{5}{2}}
Multiply -4 times \frac{5}{2}.
n=\frac{0±\sqrt{360000}}{2\times \frac{5}{2}}
Multiply -10 times -36000.
n=\frac{0±600}{2\times \frac{5}{2}}
Take the square root of 360000.
n=\frac{0±600}{5}
Multiply 2 times \frac{5}{2}.
n=120
Now solve the equation n=\frac{0±600}{5} when ± is plus. Divide 600 by 5.
n=-120
Now solve the equation n=\frac{0±600}{5} when ± is minus. Divide -600 by 5.
n=120 n=-120
The equation is now solved.