Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{XX}{X\left(X-3\right)}+\frac{\left(X-3\right)\left(X-3\right)}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of X-3 and X is X\left(X-3\right). Multiply \frac{X}{X-3} times \frac{X}{X}. Multiply \frac{X-3}{X} times \frac{X-3}{X-3}.
\frac{\frac{XX+\left(X-3\right)\left(X-3\right)}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Since \frac{XX}{X\left(X-3\right)} and \frac{\left(X-3\right)\left(X-3\right)}{X\left(X-3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{X^{2}+X^{2}-3X-3X+9}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Do the multiplications in XX+\left(X-3\right)\left(X-3\right).
\frac{\frac{2X^{2}-6X+9}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Combine like terms in X^{2}+X^{2}-3X-3X+9.
\frac{\frac{2X^{2}-6X+9}{X\left(X-3\right)}-\frac{X\left(X-3\right)}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{X\left(X-3\right)}{X\left(X-3\right)}.
\frac{\frac{2X^{2}-6X+9-X\left(X-3\right)}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Since \frac{2X^{2}-6X+9}{X\left(X-3\right)} and \frac{X\left(X-3\right)}{X\left(X-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2X^{2}-6X+9-X^{2}+3X}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Do the multiplications in 2X^{2}-6X+9-X\left(X-3\right).
\frac{\frac{X^{2}-3X+9}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Combine like terms in 2X^{2}-6X+9-X^{2}+3X.
\frac{\left(X^{2}-3X+9\right)\times 3\left(X-3\right)}{X\left(X-3\right)\left(X^{2}-3X+9\right)}
Divide \frac{X^{2}-3X+9}{X\left(X-3\right)} by \frac{X^{2}-3X+9}{3\left(X-3\right)} by multiplying \frac{X^{2}-3X+9}{X\left(X-3\right)} by the reciprocal of \frac{X^{2}-3X+9}{3\left(X-3\right)}.
\frac{3}{X}
Cancel out \left(X-3\right)\left(X^{2}-3X+9\right) in both numerator and denominator.
\frac{\frac{XX}{X\left(X-3\right)}+\frac{\left(X-3\right)\left(X-3\right)}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of X-3 and X is X\left(X-3\right). Multiply \frac{X}{X-3} times \frac{X}{X}. Multiply \frac{X-3}{X} times \frac{X-3}{X-3}.
\frac{\frac{XX+\left(X-3\right)\left(X-3\right)}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Since \frac{XX}{X\left(X-3\right)} and \frac{\left(X-3\right)\left(X-3\right)}{X\left(X-3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{X^{2}+X^{2}-3X-3X+9}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Do the multiplications in XX+\left(X-3\right)\left(X-3\right).
\frac{\frac{2X^{2}-6X+9}{X\left(X-3\right)}-1}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Combine like terms in X^{2}+X^{2}-3X-3X+9.
\frac{\frac{2X^{2}-6X+9}{X\left(X-3\right)}-\frac{X\left(X-3\right)}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{X\left(X-3\right)}{X\left(X-3\right)}.
\frac{\frac{2X^{2}-6X+9-X\left(X-3\right)}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Since \frac{2X^{2}-6X+9}{X\left(X-3\right)} and \frac{X\left(X-3\right)}{X\left(X-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2X^{2}-6X+9-X^{2}+3X}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Do the multiplications in 2X^{2}-6X+9-X\left(X-3\right).
\frac{\frac{X^{2}-3X+9}{X\left(X-3\right)}}{\frac{X^{2}-3X+9}{3\left(X-3\right)}}
Combine like terms in 2X^{2}-6X+9-X^{2}+3X.
\frac{\left(X^{2}-3X+9\right)\times 3\left(X-3\right)}{X\left(X-3\right)\left(X^{2}-3X+9\right)}
Divide \frac{X^{2}-3X+9}{X\left(X-3\right)} by \frac{X^{2}-3X+9}{3\left(X-3\right)} by multiplying \frac{X^{2}-3X+9}{X\left(X-3\right)} by the reciprocal of \frac{X^{2}-3X+9}{3\left(X-3\right)}.
\frac{3}{X}
Cancel out \left(X-3\right)\left(X^{2}-3X+9\right) in both numerator and denominator.