Solve for y
y=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
8\times \frac{8y-44}{5}+10y=-59
Multiply both sides of the equation by 40, the least common multiple of 5,4,40.
\frac{8\left(8y-44\right)}{5}+10y=-59
Express 8\times \frac{8y-44}{5} as a single fraction.
\frac{64y-352}{5}+10y=-59
Use the distributive property to multiply 8 by 8y-44.
\frac{64}{5}y-\frac{352}{5}+10y=-59
Divide each term of 64y-352 by 5 to get \frac{64}{5}y-\frac{352}{5}.
\frac{114}{5}y-\frac{352}{5}=-59
Combine \frac{64}{5}y and 10y to get \frac{114}{5}y.
\frac{114}{5}y=-59+\frac{352}{5}
Add \frac{352}{5} to both sides.
\frac{114}{5}y=-\frac{295}{5}+\frac{352}{5}
Convert -59 to fraction -\frac{295}{5}.
\frac{114}{5}y=\frac{-295+352}{5}
Since -\frac{295}{5} and \frac{352}{5} have the same denominator, add them by adding their numerators.
\frac{114}{5}y=\frac{57}{5}
Add -295 and 352 to get 57.
y=\frac{57}{5}\times \frac{5}{114}
Multiply both sides by \frac{5}{114}, the reciprocal of \frac{114}{5}.
y=\frac{57\times 5}{5\times 114}
Multiply \frac{57}{5} times \frac{5}{114} by multiplying numerator times numerator and denominator times denominator.
y=\frac{57}{114}
Cancel out 5 in both numerator and denominator.
y=\frac{1}{2}
Reduce the fraction \frac{57}{114} to lowest terms by extracting and canceling out 57.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}