Verify
false
Share
Copied to clipboard
\frac{\frac{8}{5}}{\frac{32}{400}-\frac{125}{400}}=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Least common multiple of 25 and 16 is 400. Convert \frac{2}{25} and \frac{5}{16} to fractions with denominator 400.
\frac{\frac{8}{5}}{\frac{32-125}{400}}=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Since \frac{32}{400} and \frac{125}{400} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8}{5}}{-\frac{93}{400}}=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Subtract 125 from 32 to get -93.
\frac{8}{5}\left(-\frac{400}{93}\right)=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Divide \frac{8}{5} by -\frac{93}{400} by multiplying \frac{8}{5} by the reciprocal of -\frac{93}{400}.
\frac{8\left(-400\right)}{5\times 93}=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Multiply \frac{8}{5} times -\frac{400}{93} by multiplying numerator times numerator and denominator times denominator.
\frac{-3200}{465}=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Do the multiplications in the fraction \frac{8\left(-400\right)}{5\times 93}.
-\frac{640}{93}=\frac{\frac{8}{5}}{\frac{32-125}{400}}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Reduce the fraction \frac{-3200}{465} to lowest terms by extracting and canceling out 5.
-\frac{640}{93}=\frac{8\times 400}{5\left(32-125\right)}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Divide \frac{8}{5} by \frac{32-125}{400} by multiplying \frac{8}{5} by the reciprocal of \frac{32-125}{400}.
-\frac{640}{93}=\frac{8\times 80}{32-125}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Cancel out 5 in both numerator and denominator.
-\frac{640}{93}=\frac{640}{32-125}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Multiply 8 and 80 to get 640.
-\frac{640}{93}=\frac{640}{-93}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Subtract 125 from 32 to get -93.
-\frac{640}{93}=-\frac{640}{93}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Fraction \frac{640}{-93} can be rewritten as -\frac{640}{93} by extracting the negative sign.
\text{true}\text{ and }\frac{\frac{8}{5}}{\frac{32-125}{400}}=8
Compare -\frac{640}{93} and -\frac{640}{93}.
\text{true}\text{ and }\frac{8\times 400}{5\left(32-125\right)}=8
Divide \frac{8}{5} by \frac{32-125}{400} by multiplying \frac{8}{5} by the reciprocal of \frac{32-125}{400}.
\text{true}\text{ and }\frac{8\times 80}{32-125}=8
Cancel out 5 in both numerator and denominator.
\text{true}\text{ and }\frac{640}{32-125}=8
Multiply 8 and 80 to get 640.
\text{true}\text{ and }\frac{640}{-93}=8
Subtract 125 from 32 to get -93.
\text{true}\text{ and }-\frac{640}{93}=8
Fraction \frac{640}{-93} can be rewritten as -\frac{640}{93} by extracting the negative sign.
\text{true}\text{ and }-\frac{640}{93}=\frac{744}{93}
Convert 8 to fraction \frac{744}{93}.
\text{true}\text{ and }\text{false}
Compare -\frac{640}{93} and \frac{744}{93}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}