\frac{ \frac{ 7.5 }{ 0.6 } -2.5 }{ \frac{ \frac{ 68 \div 2 \frac{ 5 }{ 6 } -42 \cdot 0.1 }{ } 1.1 }{ \frac{ 2 }{ 3 } \cdot 0.375+ \frac{ 2.68 }{ } 0.8 } }
Evaluate
\frac{3591}{3982}\approx 0.901808137
Factor
\frac{7 \cdot 19 \cdot 3 ^ {3}}{2 \cdot 11 \cdot 181} = 0.9018081366147664
Share
Copied to clipboard
\frac{\frac{75}{6}-2.5}{\frac{\frac{\frac{68}{2}\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Expand \frac{7.5}{0.6} by multiplying both numerator and the denominator by 10.
\frac{\frac{25}{2}-2.5}{\frac{\frac{\frac{68}{2}\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Reduce the fraction \frac{75}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{25}{2}-\frac{5}{2}}{\frac{\frac{\frac{68}{2}\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{25-5}{2}}{\frac{\frac{\frac{68}{2}\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Since \frac{25}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{20}{2}}{\frac{\frac{\frac{68}{2}\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Subtract 5 from 25 to get 20.
\frac{10}{\frac{\frac{\frac{68}{2}\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Divide 20 by 2 to get 10.
\frac{10}{\frac{\frac{34\times \frac{5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Divide 68 by 2 to get 34.
\frac{10}{\frac{\frac{\frac{34\times 5}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Express 34\times \frac{5}{6} as a single fraction.
\frac{10}{\frac{\frac{\frac{170}{6}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Multiply 34 and 5 to get 170.
\frac{10}{\frac{\frac{\frac{85}{3}-42\times 0.1}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Reduce the fraction \frac{170}{6} to lowest terms by extracting and canceling out 2.
\frac{10}{\frac{\frac{\frac{85}{3}-4.2}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Multiply 42 and 0.1 to get 4.2.
\frac{10}{\frac{\frac{\frac{85}{3}-\frac{21}{5}}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Convert decimal number 4.2 to fraction \frac{42}{10}. Reduce the fraction \frac{42}{10} to lowest terms by extracting and canceling out 2.
\frac{10}{\frac{\frac{\frac{425}{15}-\frac{63}{15}}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Least common multiple of 3 and 5 is 15. Convert \frac{85}{3} and \frac{21}{5} to fractions with denominator 15.
\frac{10}{\frac{\frac{\frac{425-63}{15}}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Since \frac{425}{15} and \frac{63}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{10}{\frac{\frac{\frac{362}{15}}{1}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Subtract 63 from 425 to get 362.
\frac{10}{\frac{\frac{362}{15}\times 1.1}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Anything divided by one gives itself.
\frac{10}{\frac{\frac{362}{15}\times \frac{11}{10}}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Convert decimal number 1.1 to fraction \frac{11}{10}.
\frac{10}{\frac{\frac{362\times 11}{15\times 10}}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Multiply \frac{362}{15} times \frac{11}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{\frac{\frac{3982}{150}}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Do the multiplications in the fraction \frac{362\times 11}{15\times 10}.
\frac{10}{\frac{\frac{1991}{75}}{\frac{2}{3}\times 0.375+\frac{2.68}{1}\times 0.8}}
Reduce the fraction \frac{3982}{150} to lowest terms by extracting and canceling out 2.
\frac{10}{\frac{\frac{1991}{75}}{\frac{2}{3}\times \frac{3}{8}+\frac{2.68}{1}\times 0.8}}
Convert decimal number 0.375 to fraction \frac{375}{1000}. Reduce the fraction \frac{375}{1000} to lowest terms by extracting and canceling out 125.
\frac{10}{\frac{\frac{1991}{75}}{\frac{2\times 3}{3\times 8}+\frac{2.68}{1}\times 0.8}}
Multiply \frac{2}{3} times \frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{\frac{\frac{1991}{75}}{\frac{2}{8}+\frac{2.68}{1}\times 0.8}}
Cancel out 3 in both numerator and denominator.
\frac{10}{\frac{\frac{1991}{75}}{\frac{1}{4}+\frac{2.68}{1}\times 0.8}}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{10}{\frac{\frac{1991}{75}}{\frac{1}{4}+2.68\times 0.8}}
Anything divided by one gives itself.
\frac{10}{\frac{\frac{1991}{75}}{\frac{1}{4}+2.144}}
Multiply 2.68 and 0.8 to get 2.144.
\frac{10}{\frac{\frac{1991}{75}}{\frac{1}{4}+\frac{268}{125}}}
Convert decimal number 2.144 to fraction \frac{2144}{1000}. Reduce the fraction \frac{2144}{1000} to lowest terms by extracting and canceling out 8.
\frac{10}{\frac{\frac{1991}{75}}{\frac{125}{500}+\frac{1072}{500}}}
Least common multiple of 4 and 125 is 500. Convert \frac{1}{4} and \frac{268}{125} to fractions with denominator 500.
\frac{10}{\frac{\frac{1991}{75}}{\frac{125+1072}{500}}}
Since \frac{125}{500} and \frac{1072}{500} have the same denominator, add them by adding their numerators.
\frac{10}{\frac{\frac{1991}{75}}{\frac{1197}{500}}}
Add 125 and 1072 to get 1197.
\frac{10}{\frac{1991}{75}\times \frac{500}{1197}}
Divide \frac{1991}{75} by \frac{1197}{500} by multiplying \frac{1991}{75} by the reciprocal of \frac{1197}{500}.
\frac{10}{\frac{1991\times 500}{75\times 1197}}
Multiply \frac{1991}{75} times \frac{500}{1197} by multiplying numerator times numerator and denominator times denominator.
\frac{10}{\frac{995500}{89775}}
Do the multiplications in the fraction \frac{1991\times 500}{75\times 1197}.
\frac{10}{\frac{39820}{3591}}
Reduce the fraction \frac{995500}{89775} to lowest terms by extracting and canceling out 25.
10\times \frac{3591}{39820}
Divide 10 by \frac{39820}{3591} by multiplying 10 by the reciprocal of \frac{39820}{3591}.
\frac{10\times 3591}{39820}
Express 10\times \frac{3591}{39820} as a single fraction.
\frac{35910}{39820}
Multiply 10 and 3591 to get 35910.
\frac{3591}{3982}
Reduce the fraction \frac{35910}{39820} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}