Evaluate
\frac{t\left(9t^{2}+10\right)}{4t^{2}+5}
Expand
\frac{9t^{3}+10t}{4t^{2}+5}
Share
Copied to clipboard
\frac{\frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}}}{\frac{3a\left(1+t^{2}\right)-3at\times 0.2t}{\left(1+t^{2}\right)^{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}}}{\frac{3a\left(1+t^{2}\right)-3at^{2}\times 0.2}{\left(1+t^{2}\right)^{2}}}
Multiply t and t to get t^{2}.
\frac{\left(6at\left(1+t^{2}\right)-3at^{3}\times 0.2\right)\left(1+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}\left(3a\left(1+t^{2}\right)-3at^{2}\times 0.2\right)}
Divide \frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}} by \frac{3a\left(1+t^{2}\right)-3at^{2}\times 0.2}{\left(1+t^{2}\right)^{2}} by multiplying \frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}} by the reciprocal of \frac{3a\left(1+t^{2}\right)-3at^{2}\times 0.2}{\left(1+t^{2}\right)^{2}}.
\frac{6at\left(t^{2}+1\right)-0.2\times 3at^{3}}{3a\left(t^{2}+1\right)-0.2\times 3at^{2}}
Cancel out \left(t^{2}+1\right)^{2} in both numerator and denominator.
\frac{6at\left(t^{2}+1\right)-0.6at^{3}}{3a\left(t^{2}+1\right)-0.2\times 3at^{2}}
Multiply 0.2 and 3 to get 0.6.
\frac{6at\left(t^{2}+1\right)-0.6at^{3}}{3a\left(t^{2}+1\right)-0.6at^{2}}
Multiply 0.2 and 3 to get 0.6.
\frac{0.6at\left(9t^{2}+10\right)}{0.6a\left(4t^{2}+5\right)}
Factor the expressions that are not already factored.
\frac{0.6t\left(9t^{2}+10\right)}{0.6\left(4t^{2}+5\right)}
Cancel out a in both numerator and denominator.
\frac{t\left(9t^{2}+10\right)}{0.6^{0}\left(4t^{2}+5\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{9t^{3}+10t}{4t^{2}+5}
Expand the expression.
\frac{\frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}}}{\frac{3a\left(1+t^{2}\right)-3at\times 0.2t}{\left(1+t^{2}\right)^{2}}}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}}}{\frac{3a\left(1+t^{2}\right)-3at^{2}\times 0.2}{\left(1+t^{2}\right)^{2}}}
Multiply t and t to get t^{2}.
\frac{\left(6at\left(1+t^{2}\right)-3at^{3}\times 0.2\right)\left(1+t^{2}\right)^{2}}{\left(1+t^{2}\right)^{2}\left(3a\left(1+t^{2}\right)-3at^{2}\times 0.2\right)}
Divide \frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}} by \frac{3a\left(1+t^{2}\right)-3at^{2}\times 0.2}{\left(1+t^{2}\right)^{2}} by multiplying \frac{6at\left(1+t^{2}\right)-3at^{3}\times 0.2}{\left(1+t^{2}\right)^{2}} by the reciprocal of \frac{3a\left(1+t^{2}\right)-3at^{2}\times 0.2}{\left(1+t^{2}\right)^{2}}.
\frac{6at\left(t^{2}+1\right)-0.2\times 3at^{3}}{3a\left(t^{2}+1\right)-0.2\times 3at^{2}}
Cancel out \left(t^{2}+1\right)^{2} in both numerator and denominator.
\frac{6at\left(t^{2}+1\right)-0.6at^{3}}{3a\left(t^{2}+1\right)-0.2\times 3at^{2}}
Multiply 0.2 and 3 to get 0.6.
\frac{6at\left(t^{2}+1\right)-0.6at^{3}}{3a\left(t^{2}+1\right)-0.6at^{2}}
Multiply 0.2 and 3 to get 0.6.
\frac{0.6at\left(9t^{2}+10\right)}{0.6a\left(4t^{2}+5\right)}
Factor the expressions that are not already factored.
\frac{0.6t\left(9t^{2}+10\right)}{0.6\left(4t^{2}+5\right)}
Cancel out a in both numerator and denominator.
\frac{t\left(9t^{2}+10\right)}{0.6^{0}\left(4t^{2}+5\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{9t^{3}+10t}{4t^{2}+5}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}