Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{\frac{\left(5\times 3+2\right)\times 4}{3\left(1\times 4+1\right)}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Divide \frac{5\times 3+2}{3} by \frac{1\times 4+1}{4} by multiplying \frac{5\times 3+2}{3} by the reciprocal of \frac{1\times 4+1}{4}.
\frac{\frac{\left(15+2\right)\times 4}{3\left(1\times 4+1\right)}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 5 and 3 to get 15.
\frac{\frac{17\times 4}{3\left(1\times 4+1\right)}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 15 and 2 to get 17.
\frac{\frac{68}{3\left(1\times 4+1\right)}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 17 and 4 to get 68.
\frac{\frac{68}{3\left(4+1\right)}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 1 and 4 to get 4.
\frac{\frac{68}{3\times 5}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 4 and 1 to get 5.
\frac{\frac{68}{15}-\left(\frac{2\times 2+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 3 and 5 to get 15.
\frac{\frac{68}{15}-\left(\frac{4+1}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 2 and 2 to get 4.
\frac{\frac{68}{15}-\left(\frac{5}{2}+\frac{1\times 3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 4 and 1 to get 5.
\frac{\frac{68}{15}-\left(\frac{5}{2}+\frac{3+1}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 1 and 3 to get 3.
\frac{\frac{68}{15}-\left(\frac{5}{2}+\frac{4}{3}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 3 and 1 to get 4.
\frac{\frac{68}{15}-\left(\frac{15}{6}+\frac{8}{6}\right)\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{\frac{68}{15}-\frac{15+8}{6}\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Since \frac{15}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{68}{15}-\frac{23}{6}\left(\frac{3\times 5+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 15 and 8 to get 23.
\frac{\frac{68}{15}-\frac{23}{6}\left(\frac{15+1}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 3 and 5 to get 15.
\frac{\frac{68}{15}-\frac{23}{6}\left(\frac{16}{5}-\frac{2\times 5+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 15 and 1 to get 16.
\frac{\frac{68}{15}-\frac{23}{6}\left(\frac{16}{5}-\frac{10+4}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 2 and 5 to get 10.
\frac{\frac{68}{15}-\frac{23}{6}\left(\frac{16}{5}-\frac{14}{5}\right)}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 10 and 4 to get 14.
\frac{\frac{68}{15}-\frac{23}{6}\times \frac{16-14}{5}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Since \frac{16}{5} and \frac{14}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{68}{15}-\frac{23}{6}\times \frac{2}{5}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Subtract 14 from 16 to get 2.
\frac{\frac{68}{15}-\frac{23\times 2}{6\times 5}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply \frac{23}{6} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{68}{15}-\frac{46}{30}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Do the multiplications in the fraction \frac{23\times 2}{6\times 5}.
\frac{\frac{68}{15}-\frac{23}{15}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Reduce the fraction \frac{46}{30} to lowest terms by extracting and canceling out 2.
\frac{\frac{68-23}{15}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Since \frac{68}{15} and \frac{23}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{45}{15}}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Subtract 23 from 68 to get 45.
\frac{3}{\frac{\frac{5\times 3+2}{3}}{\frac{1\times 2+1}{2}}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Divide 45 by 15 to get 3.
\frac{3}{\frac{\left(5\times 3+2\right)\times 2}{3\left(1\times 2+1\right)}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Divide \frac{5\times 3+2}{3} by \frac{1\times 2+1}{2} by multiplying \frac{5\times 3+2}{3} by the reciprocal of \frac{1\times 2+1}{2}.
\frac{3}{\frac{\left(15+2\right)\times 2}{3\left(1\times 2+1\right)}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 5 and 3 to get 15.
\frac{3}{\frac{17\times 2}{3\left(1\times 2+1\right)}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 15 and 2 to get 17.
\frac{3}{\frac{34}{3\left(1\times 2+1\right)}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 17 and 2 to get 34.
\frac{3}{\frac{34}{3\left(2+1\right)}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 1 and 2 to get 2.
\frac{3}{\frac{34}{3\times 3}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 2 and 1 to get 3.
\frac{3}{\frac{34}{9}-\frac{2\times 4+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 3 and 3 to get 9.
\frac{3}{\frac{34}{9}-\frac{8+1}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Multiply 2 and 4 to get 8.
\frac{3}{\frac{34}{9}-\frac{9}{4}\times \frac{1\times 6+1}{6}-\frac{11}{72}}
Add 8 and 1 to get 9.
\frac{3}{\frac{34}{9}-\frac{9}{4}\times \frac{6+1}{6}-\frac{11}{72}}
Multiply 1 and 6 to get 6.
\frac{3}{\frac{34}{9}-\frac{9}{4}\times \frac{7}{6}-\frac{11}{72}}
Add 6 and 1 to get 7.
\frac{3}{\frac{34}{9}-\frac{9\times 7}{4\times 6}-\frac{11}{72}}
Multiply \frac{9}{4} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{\frac{34}{9}-\frac{63}{24}-\frac{11}{72}}
Do the multiplications in the fraction \frac{9\times 7}{4\times 6}.
\frac{3}{\frac{34}{9}-\frac{21}{8}-\frac{11}{72}}
Reduce the fraction \frac{63}{24} to lowest terms by extracting and canceling out 3.
\frac{3}{\frac{272}{72}-\frac{189}{72}-\frac{11}{72}}
Least common multiple of 9 and 8 is 72. Convert \frac{34}{9} and \frac{21}{8} to fractions with denominator 72.
\frac{3}{\frac{272-189}{72}-\frac{11}{72}}
Since \frac{272}{72} and \frac{189}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{\frac{83}{72}-\frac{11}{72}}
Subtract 189 from 272 to get 83.
\frac{3}{\frac{83-11}{72}}
Since \frac{83}{72} and \frac{11}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{\frac{72}{72}}
Subtract 11 from 83 to get 72.
\frac{3}{1}
Divide 72 by 72 to get 1.
3
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}