Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{5}{12}\right)^{1}x^{4}y^{2}}{\left(-\frac{1}{6}\right)^{1}x^{3}y^{1}}
Use the rules of exponents to simplify the expression.
\frac{\left(\frac{5}{12}\right)^{1}}{\left(-\frac{1}{6}\right)^{1}}x^{4-3}y^{2-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{5}{12}\right)^{1}}{\left(-\frac{1}{6}\right)^{1}}x^{1}y^{2-1}
Subtract 3 from 4.
\frac{\left(\frac{5}{12}\right)^{1}}{\left(-\frac{1}{6}\right)^{1}}xy^{1}
Subtract 1 from 2.
-\frac{5}{2}xy
Divide \frac{5}{12} by -\frac{1}{6} by multiplying \frac{5}{12} by the reciprocal of -\frac{1}{6}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5y^{2}}{12\left(-\frac{y}{6}\right)}x^{4-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\frac{5y}{2}\right)x^{1})
Do the arithmetic.
\left(-\frac{5y}{2}\right)x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{5y}{2}\right)x^{0}
Do the arithmetic.
\left(-\frac{5y}{2}\right)\times 1
For any term t except 0, t^{0}=1.
-\frac{5y}{2}
For any term t, t\times 1=t and 1t=t.