Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{120}{1!}+\frac{5!}{2!}}{\frac{20!}{5!\times 15!}}
The factorial of 5 is 120.
\frac{\frac{120}{1}+\frac{5!}{2!}}{\frac{20!}{5!\times 15!}}
The factorial of 1 is 1.
\frac{120+\frac{5!}{2!}}{\frac{20!}{5!\times 15!}}
Anything divided by one gives itself.
\frac{120+\frac{120}{2!}}{\frac{20!}{5!\times 15!}}
The factorial of 5 is 120.
\frac{120+\frac{120}{2}}{\frac{20!}{5!\times 15!}}
The factorial of 2 is 2.
\frac{120+60}{\frac{20!}{5!\times 15!}}
Divide 120 by 2 to get 60.
\frac{180}{\frac{20!}{5!\times 15!}}
Add 120 and 60 to get 180.
\frac{180}{\frac{2432902008176640000}{5!\times 15!}}
The factorial of 20 is 2432902008176640000.
\frac{180}{\frac{2432902008176640000}{120\times 15!}}
The factorial of 5 is 120.
\frac{180}{\frac{2432902008176640000}{120\times 1307674368000}}
The factorial of 15 is 1307674368000.
\frac{180}{\frac{2432902008176640000}{156920924160000}}
Multiply 120 and 1307674368000 to get 156920924160000.
\frac{180}{15504}
Divide 2432902008176640000 by 156920924160000 to get 15504.
\frac{15}{1292}
Reduce the fraction \frac{180}{15504} to lowest terms by extracting and canceling out 12.