Evaluate
\frac{15}{1292}\approx 0.011609907
Factor
\frac{3 \cdot 5}{2 ^ {2} \cdot 17 \cdot 19} = 0.011609907120743035
Share
Copied to clipboard
\frac{\frac{120}{1!}+\frac{5!}{2!}}{\frac{20!}{5!\times 15!}}
The factorial of 5 is 120.
\frac{\frac{120}{1}+\frac{5!}{2!}}{\frac{20!}{5!\times 15!}}
The factorial of 1 is 1.
\frac{120+\frac{5!}{2!}}{\frac{20!}{5!\times 15!}}
Anything divided by one gives itself.
\frac{120+\frac{120}{2!}}{\frac{20!}{5!\times 15!}}
The factorial of 5 is 120.
\frac{120+\frac{120}{2}}{\frac{20!}{5!\times 15!}}
The factorial of 2 is 2.
\frac{120+60}{\frac{20!}{5!\times 15!}}
Divide 120 by 2 to get 60.
\frac{180}{\frac{20!}{5!\times 15!}}
Add 120 and 60 to get 180.
\frac{180}{\frac{2432902008176640000}{5!\times 15!}}
The factorial of 20 is 2432902008176640000.
\frac{180}{\frac{2432902008176640000}{120\times 15!}}
The factorial of 5 is 120.
\frac{180}{\frac{2432902008176640000}{120\times 1307674368000}}
The factorial of 15 is 1307674368000.
\frac{180}{\frac{2432902008176640000}{156920924160000}}
Multiply 120 and 1307674368000 to get 156920924160000.
\frac{180}{15504}
Divide 2432902008176640000 by 156920924160000 to get 15504.
\frac{15}{1292}
Reduce the fraction \frac{180}{15504} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}