Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Divide \frac{4+2\sqrt{3}}{12+6\sqrt{2}} by \frac{2-\sqrt{2}}{4-2\sqrt{3}} by multiplying \frac{4+2\sqrt{3}}{12+6\sqrt{2}} by the reciprocal of \frac{2-\sqrt{2}}{4-2\sqrt{3}}.
\frac{4^{2}-\left(2\sqrt{3}\right)^{2}}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Consider \left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16-\left(2\sqrt{3}\right)^{2}}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Calculate 4 to the power of 2 and get 16.
\frac{16-2^{2}\left(\sqrt{3}\right)^{2}}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{16-4\left(\sqrt{3}\right)^{2}}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Calculate 2 to the power of 2 and get 4.
\frac{16-4\times 3}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
The square of \sqrt{3} is 3.
\frac{16-12}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Multiply 4 and 3 to get 12.
\frac{4}{\left(12+6\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Subtract 12 from 16 to get 4.
\frac{4}{24-12\sqrt{2}+12\sqrt{2}-6\left(\sqrt{2}\right)^{2}}
Apply the distributive property by multiplying each term of 12+6\sqrt{2} by each term of 2-\sqrt{2}.
\frac{4}{24-6\left(\sqrt{2}\right)^{2}}
Combine -12\sqrt{2} and 12\sqrt{2} to get 0.
\frac{4}{24-6\times 2}
The square of \sqrt{2} is 2.
\frac{4}{24-12}
Multiply -6 and 2 to get -12.
\frac{4}{12}
Subtract 12 from 24 to get 12.
\frac{1}{3}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.