Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{16}+\frac{4}{4}+2=4x^{2}
Multiply both sides of the equation by 4.
\frac{1}{4}+\frac{4}{4}+2=4x^{2}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
\frac{1}{4}+1+2=4x^{2}
Divide 4 by 4 to get 1.
\frac{5}{4}+2=4x^{2}
Add \frac{1}{4} and 1 to get \frac{5}{4}.
\frac{13}{4}=4x^{2}
Add \frac{5}{4} and 2 to get \frac{13}{4}.
4x^{2}=\frac{13}{4}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{\frac{13}{4}}{4}
Divide both sides by 4.
x^{2}=\frac{13}{4\times 4}
Express \frac{\frac{13}{4}}{4} as a single fraction.
x^{2}=\frac{13}{16}
Multiply 4 and 4 to get 16.
x=\frac{\sqrt{13}}{4} x=-\frac{\sqrt{13}}{4}
Take the square root of both sides of the equation.
\frac{4}{16}+\frac{4}{4}+2=4x^{2}
Multiply both sides of the equation by 4.
\frac{1}{4}+\frac{4}{4}+2=4x^{2}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
\frac{1}{4}+1+2=4x^{2}
Divide 4 by 4 to get 1.
\frac{5}{4}+2=4x^{2}
Add \frac{1}{4} and 1 to get \frac{5}{4}.
\frac{13}{4}=4x^{2}
Add \frac{5}{4} and 2 to get \frac{13}{4}.
4x^{2}=\frac{13}{4}
Swap sides so that all variable terms are on the left hand side.
4x^{2}-\frac{13}{4}=0
Subtract \frac{13}{4} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-\frac{13}{4}\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -\frac{13}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-\frac{13}{4}\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-\frac{13}{4}\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{52}}{2\times 4}
Multiply -16 times -\frac{13}{4}.
x=\frac{0±2\sqrt{13}}{2\times 4}
Take the square root of 52.
x=\frac{0±2\sqrt{13}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{13}}{4}
Now solve the equation x=\frac{0±2\sqrt{13}}{8} when ± is plus.
x=-\frac{\sqrt{13}}{4}
Now solve the equation x=\frac{0±2\sqrt{13}}{8} when ± is minus.
x=\frac{\sqrt{13}}{4} x=-\frac{\sqrt{13}}{4}
The equation is now solved.