Solve for x
x\neq 0
Solve for x (complex solution)
x\in \mathrm{C}\setminus 0,-i\times 3\sqrt{85},i\times 3\sqrt{85}
Graph
Share
Copied to clipboard
x^{2}\left(\frac{30.6}{x}-\frac{25}{x}\right)=5.6x
Multiply both sides of the equation by x^{2}+765.
x^{2}\times \frac{30.6}{x}+x^{2}\left(-\frac{25}{x}\right)=5.6x
Use the distributive property to multiply x^{2} by \frac{30.6}{x}-\frac{25}{x}.
x^{2}\times \frac{30.6}{x}+\frac{-x^{2}\times 25}{x}=5.6x
Express x^{2}\left(-\frac{25}{x}\right) as a single fraction.
x^{2}\times \frac{30.6}{x}+\frac{-25x^{2}}{x}=5.6x
Multiply -1 and 25 to get -25.
x^{2}\times \frac{30.6}{x}+\frac{-25x^{2}}{x}-5.6x=0
Subtract 5.6x from both sides.
x^{2}\times 30.6-25x^{2}-5.6xx=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}\times 30.6-25x^{2}-5.6x^{2}=0
Multiply x and x to get x^{2}.
5.6x^{2}-5.6x^{2}=0
Combine x^{2}\times 30.6 and -25x^{2} to get 5.6x^{2}.
0=0
Combine 5.6x^{2} and -5.6x^{2} to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}