Evaluate
\frac{9+x-2x^{2}}{x\left(3-x\right)\left(3x+2\right)}
Expand
\frac{9+x-2x^{2}}{x\left(3-x\right)\left(3x+2\right)}
Graph
Share
Copied to clipboard
\frac{\frac{3}{x}-\frac{\left(x-2\right)\times 2}{3-x}}{3x+2}
Divide x-2 by \frac{3-x}{2} by multiplying x-2 by the reciprocal of \frac{3-x}{2}.
\frac{\frac{3\left(-x+3\right)}{x\left(-x+3\right)}-\frac{\left(x-2\right)\times 2x}{x\left(-x+3\right)}}{3x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 3-x is x\left(-x+3\right). Multiply \frac{3}{x} times \frac{-x+3}{-x+3}. Multiply \frac{\left(x-2\right)\times 2}{3-x} times \frac{x}{x}.
\frac{\frac{3\left(-x+3\right)-\left(x-2\right)\times 2x}{x\left(-x+3\right)}}{3x+2}
Since \frac{3\left(-x+3\right)}{x\left(-x+3\right)} and \frac{\left(x-2\right)\times 2x}{x\left(-x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-3x+9-2x^{2}+4x}{x\left(-x+3\right)}}{3x+2}
Do the multiplications in 3\left(-x+3\right)-\left(x-2\right)\times 2x.
\frac{\frac{x+9-2x^{2}}{x\left(-x+3\right)}}{3x+2}
Combine like terms in -3x+9-2x^{2}+4x.
\frac{x+9-2x^{2}}{x\left(-x+3\right)\left(3x+2\right)}
Express \frac{\frac{x+9-2x^{2}}{x\left(-x+3\right)}}{3x+2} as a single fraction.
\frac{x+9-2x^{2}}{\left(-x^{2}+3x\right)\left(3x+2\right)}
Use the distributive property to multiply x by -x+3.
\frac{x+9-2x^{2}}{-3x^{3}-2x^{2}+9x^{2}+6x}
Apply the distributive property by multiplying each term of -x^{2}+3x by each term of 3x+2.
\frac{x+9-2x^{2}}{-3x^{3}+7x^{2}+6x}
Combine -2x^{2} and 9x^{2} to get 7x^{2}.
\frac{\frac{3}{x}-\frac{\left(x-2\right)\times 2}{3-x}}{3x+2}
Divide x-2 by \frac{3-x}{2} by multiplying x-2 by the reciprocal of \frac{3-x}{2}.
\frac{\frac{3\left(-x+3\right)}{x\left(-x+3\right)}-\frac{\left(x-2\right)\times 2x}{x\left(-x+3\right)}}{3x+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 3-x is x\left(-x+3\right). Multiply \frac{3}{x} times \frac{-x+3}{-x+3}. Multiply \frac{\left(x-2\right)\times 2}{3-x} times \frac{x}{x}.
\frac{\frac{3\left(-x+3\right)-\left(x-2\right)\times 2x}{x\left(-x+3\right)}}{3x+2}
Since \frac{3\left(-x+3\right)}{x\left(-x+3\right)} and \frac{\left(x-2\right)\times 2x}{x\left(-x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-3x+9-2x^{2}+4x}{x\left(-x+3\right)}}{3x+2}
Do the multiplications in 3\left(-x+3\right)-\left(x-2\right)\times 2x.
\frac{\frac{x+9-2x^{2}}{x\left(-x+3\right)}}{3x+2}
Combine like terms in -3x+9-2x^{2}+4x.
\frac{x+9-2x^{2}}{x\left(-x+3\right)\left(3x+2\right)}
Express \frac{\frac{x+9-2x^{2}}{x\left(-x+3\right)}}{3x+2} as a single fraction.
\frac{x+9-2x^{2}}{\left(-x^{2}+3x\right)\left(3x+2\right)}
Use the distributive property to multiply x by -x+3.
\frac{x+9-2x^{2}}{-3x^{3}-2x^{2}+9x^{2}+6x}
Apply the distributive property by multiplying each term of -x^{2}+3x by each term of 3x+2.
\frac{x+9-2x^{2}}{-3x^{3}+7x^{2}+6x}
Combine -2x^{2} and 9x^{2} to get 7x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}