Evaluate
-\frac{654}{2635}\approx -0.248197343
Factor
-\frac{654}{2635} = -0.24819734345351044
Share
Copied to clipboard
\frac{\frac{3}{5}+\frac{4}{5}-\frac{2}{17}}{\frac{4}{3}+\frac{1}{2}-\frac{21}{3}}
Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{3+4}{5}-\frac{2}{17}}{\frac{4}{3}+\frac{1}{2}-\frac{21}{3}}
Since \frac{3}{5} and \frac{4}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{7}{5}-\frac{2}{17}}{\frac{4}{3}+\frac{1}{2}-\frac{21}{3}}
Add 3 and 4 to get 7.
\frac{\frac{119}{85}-\frac{10}{85}}{\frac{4}{3}+\frac{1}{2}-\frac{21}{3}}
Least common multiple of 5 and 17 is 85. Convert \frac{7}{5} and \frac{2}{17} to fractions with denominator 85.
\frac{\frac{119-10}{85}}{\frac{4}{3}+\frac{1}{2}-\frac{21}{3}}
Since \frac{119}{85} and \frac{10}{85} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{109}{85}}{\frac{4}{3}+\frac{1}{2}-\frac{21}{3}}
Subtract 10 from 119 to get 109.
\frac{\frac{109}{85}}{\frac{8}{6}+\frac{3}{6}-\frac{21}{3}}
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{109}{85}}{\frac{8+3}{6}-\frac{21}{3}}
Since \frac{8}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{109}{85}}{\frac{11}{6}-\frac{21}{3}}
Add 8 and 3 to get 11.
\frac{\frac{109}{85}}{\frac{11}{6}-7}
Divide 21 by 3 to get 7.
\frac{\frac{109}{85}}{\frac{11}{6}-\frac{42}{6}}
Convert 7 to fraction \frac{42}{6}.
\frac{\frac{109}{85}}{\frac{11-42}{6}}
Since \frac{11}{6} and \frac{42}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{109}{85}}{-\frac{31}{6}}
Subtract 42 from 11 to get -31.
\frac{109}{85}\left(-\frac{6}{31}\right)
Divide \frac{109}{85} by -\frac{31}{6} by multiplying \frac{109}{85} by the reciprocal of -\frac{31}{6}.
\frac{109\left(-6\right)}{85\times 31}
Multiply \frac{109}{85} times -\frac{6}{31} by multiplying numerator times numerator and denominator times denominator.
\frac{-654}{2635}
Do the multiplications in the fraction \frac{109\left(-6\right)}{85\times 31}.
-\frac{654}{2635}
Fraction \frac{-654}{2635} can be rewritten as -\frac{654}{2635} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}