Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2a+7a+6\right)\left(6a^{2}-11a+3\right)}{\left(3a+5a-2\right)\left(4a^{3}-9a\right)}
Divide \frac{2a+7a+6}{3a+5a-2} by \frac{4a^{3}-9a}{6a^{2}-11a+3} by multiplying \frac{2a+7a+6}{3a+5a-2} by the reciprocal of \frac{4a^{3}-9a}{6a^{2}-11a+3}.
\frac{\left(9a+6\right)\left(6a^{2}-11a+3\right)}{\left(3a+5a-2\right)\left(4a^{3}-9a\right)}
Combine 2a and 7a to get 9a.
\frac{\left(9a+6\right)\left(6a^{2}-11a+3\right)}{\left(8a-2\right)\left(4a^{3}-9a\right)}
Combine 3a and 5a to get 8a.
\frac{3\left(2a-3\right)\left(3a-1\right)\left(3a+2\right)}{2a\left(2a-3\right)\left(4a-1\right)\left(2a+3\right)}
Factor the expressions that are not already factored.
\frac{3\left(3a-1\right)\left(3a+2\right)}{2a\left(4a-1\right)\left(2a+3\right)}
Cancel out 2a-3 in both numerator and denominator.
\frac{27a^{2}+9a-6}{16a^{3}+20a^{2}-6a}
Expand the expression.
\frac{\left(2a+7a+6\right)\left(6a^{2}-11a+3\right)}{\left(3a+5a-2\right)\left(4a^{3}-9a\right)}
Divide \frac{2a+7a+6}{3a+5a-2} by \frac{4a^{3}-9a}{6a^{2}-11a+3} by multiplying \frac{2a+7a+6}{3a+5a-2} by the reciprocal of \frac{4a^{3}-9a}{6a^{2}-11a+3}.
\frac{\left(9a+6\right)\left(6a^{2}-11a+3\right)}{\left(3a+5a-2\right)\left(4a^{3}-9a\right)}
Combine 2a and 7a to get 9a.
\frac{\left(9a+6\right)\left(6a^{2}-11a+3\right)}{\left(8a-2\right)\left(4a^{3}-9a\right)}
Combine 3a and 5a to get 8a.
\frac{3\left(2a-3\right)\left(3a-1\right)\left(3a+2\right)}{2a\left(2a-3\right)\left(4a-1\right)\left(2a+3\right)}
Factor the expressions that are not already factored.
\frac{3\left(3a-1\right)\left(3a+2\right)}{2a\left(4a-1\right)\left(2a+3\right)}
Cancel out 2a-3 in both numerator and denominator.
\frac{27a^{2}+9a-6}{16a^{3}+20a^{2}-6a}
Expand the expression.