Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{202}{4}-50}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Multiply \frac{\sqrt{101}}{2} and \frac{\sqrt{101}}{2} to get \left(\frac{\sqrt{101}}{2}\right)^{2}.
\frac{\frac{101}{2}-50}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Reduce the fraction \frac{202}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{101}{2}-\frac{100}{2}}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Convert 50 to fraction \frac{100}{2}.
\frac{\frac{101-100}{2}}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Since \frac{101}{2} and \frac{100}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Subtract 100 from 101 to get 1.
\frac{\frac{1}{2}}{2\times \frac{\left(\sqrt{101}\right)^{2}}{2^{2}}}
To raise \frac{\sqrt{101}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{2}}{\frac{2\left(\sqrt{101}\right)^{2}}{2^{2}}}
Express 2\times \frac{\left(\sqrt{101}\right)^{2}}{2^{2}} as a single fraction.
\frac{\frac{1}{2}}{\frac{\left(\sqrt{101}\right)^{2}}{2}}
Cancel out 2 in both numerator and denominator.
\frac{2}{2\left(\sqrt{101}\right)^{2}}
Divide \frac{1}{2} by \frac{\left(\sqrt{101}\right)^{2}}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{\left(\sqrt{101}\right)^{2}}{2}.
\frac{2}{2\times 101}
The square of \sqrt{101} is 101.
\frac{2}{202}
Multiply 2 and 101 to get 202.
\frac{1}{101}
Reduce the fraction \frac{2}{202} to lowest terms by extracting and canceling out 2.