Evaluate
\frac{1}{101}\approx 0.00990099
Factor
\frac{1}{101} = 0.009900990099009901
Share
Copied to clipboard
\frac{\frac{202}{4}-50}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Multiply \frac{\sqrt{101}}{2} and \frac{\sqrt{101}}{2} to get \left(\frac{\sqrt{101}}{2}\right)^{2}.
\frac{\frac{101}{2}-50}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Reduce the fraction \frac{202}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{101}{2}-\frac{100}{2}}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Convert 50 to fraction \frac{100}{2}.
\frac{\frac{101-100}{2}}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Since \frac{101}{2} and \frac{100}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{2}}{2\times \left(\frac{\sqrt{101}}{2}\right)^{2}}
Subtract 100 from 101 to get 1.
\frac{\frac{1}{2}}{2\times \frac{\left(\sqrt{101}\right)^{2}}{2^{2}}}
To raise \frac{\sqrt{101}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{2}}{\frac{2\left(\sqrt{101}\right)^{2}}{2^{2}}}
Express 2\times \frac{\left(\sqrt{101}\right)^{2}}{2^{2}} as a single fraction.
\frac{\frac{1}{2}}{\frac{\left(\sqrt{101}\right)^{2}}{2}}
Cancel out 2 in both numerator and denominator.
\frac{2}{2\left(\sqrt{101}\right)^{2}}
Divide \frac{1}{2} by \frac{\left(\sqrt{101}\right)^{2}}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{\left(\sqrt{101}\right)^{2}}{2}.
\frac{2}{2\times 101}
The square of \sqrt{101} is 101.
\frac{2}{202}
Multiply 2 and 101 to get 202.
\frac{1}{101}
Reduce the fraction \frac{2}{202} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}