Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2-\sqrt{2}+\sqrt{2}+1}{2}}{1-\frac{\frac{2-\sqrt{2}}{2}\left(\sqrt{2}+1\right)}{2}}
Since \frac{2-\sqrt{2}}{2} and \frac{\sqrt{2}+1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{2}}{1-\frac{\frac{2-\sqrt{2}}{2}\left(\sqrt{2}+1\right)}{2}}
Do the calculations in 2-\sqrt{2}+\sqrt{2}+1.
\frac{\frac{3}{2}}{1-\frac{\frac{\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{2}}{2}}
Express \frac{2-\sqrt{2}}{2}\left(\sqrt{2}+1\right) as a single fraction.
\frac{\frac{3}{2}}{1-\frac{\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{2\times 2}}
Express \frac{\frac{\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{2}}{2} as a single fraction.
\frac{\frac{3}{2}}{1-\frac{\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{4}}
Multiply 2 and 2 to get 4.
\frac{\frac{3}{2}}{\frac{4}{4}-\frac{\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{4}{4}.
\frac{\frac{3}{2}}{\frac{4-\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{4}}
Since \frac{4}{4} and \frac{\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{2}}{\frac{4-2\sqrt{2}-2+2+\sqrt{2}}{4}}
Do the multiplications in 4-\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right).
\frac{\frac{3}{2}}{\frac{4-\sqrt{2}}{4}}
Do the calculations in 4-2\sqrt{2}-2+2+\sqrt{2}.
\frac{3\times 4}{2\left(4-\sqrt{2}\right)}
Divide \frac{3}{2} by \frac{4-\sqrt{2}}{4} by multiplying \frac{3}{2} by the reciprocal of \frac{4-\sqrt{2}}{4}.
\frac{2\times 3}{-\sqrt{2}+4}
Cancel out 2 in both numerator and denominator.
\frac{2\times 3\left(-\sqrt{2}-4\right)}{\left(-\sqrt{2}+4\right)\left(-\sqrt{2}-4\right)}
Rationalize the denominator of \frac{2\times 3}{-\sqrt{2}+4} by multiplying numerator and denominator by -\sqrt{2}-4.
\frac{2\times 3\left(-\sqrt{2}-4\right)}{\left(-\sqrt{2}\right)^{2}-4^{2}}
Consider \left(-\sqrt{2}+4\right)\left(-\sqrt{2}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(-\sqrt{2}-4\right)}{\left(-\sqrt{2}\right)^{2}-4^{2}}
Multiply 2 and 3 to get 6.
\frac{6\left(-\sqrt{2}-4\right)}{\left(-1\right)^{2}\left(\sqrt{2}\right)^{2}-4^{2}}
Expand \left(-\sqrt{2}\right)^{2}.
\frac{6\left(-\sqrt{2}-4\right)}{1\left(\sqrt{2}\right)^{2}-4^{2}}
Calculate -1 to the power of 2 and get 1.
\frac{6\left(-\sqrt{2}-4\right)}{1\times 2-4^{2}}
The square of \sqrt{2} is 2.
\frac{6\left(-\sqrt{2}-4\right)}{2-4^{2}}
Multiply 1 and 2 to get 2.
\frac{6\left(-\sqrt{2}-4\right)}{2-16}
Calculate 4 to the power of 2 and get 16.
\frac{6\left(-\sqrt{2}-4\right)}{-14}
Subtract 16 from 2 to get -14.
-\frac{3}{7}\left(-\sqrt{2}-4\right)
Divide 6\left(-\sqrt{2}-4\right) by -14 to get -\frac{3}{7}\left(-\sqrt{2}-4\right).
-\frac{3}{7}\left(-1\right)\sqrt{2}-\frac{3}{7}\left(-4\right)
Use the distributive property to multiply -\frac{3}{7} by -\sqrt{2}-4.
\frac{3}{7}\sqrt{2}-\frac{3}{7}\left(-4\right)
Multiply -\frac{3}{7} and -1 to get \frac{3}{7}.
\frac{3}{7}\sqrt{2}+\frac{-3\left(-4\right)}{7}
Express -\frac{3}{7}\left(-4\right) as a single fraction.
\frac{3}{7}\sqrt{2}+\frac{12}{7}
Multiply -3 and -4 to get 12.