Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2}{b+2}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b+2 is \left(b-2\right)\left(b+2\right). Multiply \frac{2}{b+2} times \frac{b-2}{b-2}.
\frac{\frac{15+2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Since \frac{15}{\left(b-2\right)\left(b+2\right)} and \frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15+2b-4}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Do the multiplications in 15+2\left(b-2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Combine like terms in 15+2b-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b-2 is \left(b-2\right)\left(b+2\right). Multiply \frac{15}{b-2} times \frac{b+2}{b+2}.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
Since \frac{17}{\left(b-2\right)\left(b+2\right)} and \frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15b+30}{\left(b-2\right)\left(b+2\right)}}
Do the multiplications in 17+15\left(b+2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{47+15b}{\left(b-2\right)\left(b+2\right)}}
Combine like terms in 17+15b+30.
\frac{\left(11+2b\right)\left(b-2\right)\left(b+2\right)}{\left(b-2\right)\left(b+2\right)\left(47+15b\right)}
Divide \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by \frac{47+15b}{\left(b-2\right)\left(b+2\right)} by multiplying \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by the reciprocal of \frac{47+15b}{\left(b-2\right)\left(b+2\right)}.
\frac{2b+11}{15b+47}
Cancel out \left(b-2\right)\left(b+2\right) in both numerator and denominator.
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2}{b+2}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b+2 is \left(b-2\right)\left(b+2\right). Multiply \frac{2}{b+2} times \frac{b-2}{b-2}.
\frac{\frac{15+2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Since \frac{15}{\left(b-2\right)\left(b+2\right)} and \frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15+2b-4}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Do the multiplications in 15+2\left(b-2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Combine like terms in 15+2b-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b-2 is \left(b-2\right)\left(b+2\right). Multiply \frac{15}{b-2} times \frac{b+2}{b+2}.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
Since \frac{17}{\left(b-2\right)\left(b+2\right)} and \frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15b+30}{\left(b-2\right)\left(b+2\right)}}
Do the multiplications in 17+15\left(b+2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{47+15b}{\left(b-2\right)\left(b+2\right)}}
Combine like terms in 17+15b+30.
\frac{\left(11+2b\right)\left(b-2\right)\left(b+2\right)}{\left(b-2\right)\left(b+2\right)\left(47+15b\right)}
Divide \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by \frac{47+15b}{\left(b-2\right)\left(b+2\right)} by multiplying \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by the reciprocal of \frac{47+15b}{\left(b-2\right)\left(b+2\right)}.
\frac{2b+11}{15b+47}
Cancel out \left(b-2\right)\left(b+2\right) in both numerator and denominator.