Evaluate
\frac{2b+11}{15b+47}
Expand
\frac{2b+11}{15b+47}
Share
Copied to clipboard
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2}{b+2}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b+2 is \left(b-2\right)\left(b+2\right). Multiply \frac{2}{b+2} times \frac{b-2}{b-2}.
\frac{\frac{15+2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Since \frac{15}{\left(b-2\right)\left(b+2\right)} and \frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15+2b-4}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Do the multiplications in 15+2\left(b-2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Combine like terms in 15+2b-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b-2 is \left(b-2\right)\left(b+2\right). Multiply \frac{15}{b-2} times \frac{b+2}{b+2}.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
Since \frac{17}{\left(b-2\right)\left(b+2\right)} and \frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15b+30}{\left(b-2\right)\left(b+2\right)}}
Do the multiplications in 17+15\left(b+2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{47+15b}{\left(b-2\right)\left(b+2\right)}}
Combine like terms in 17+15b+30.
\frac{\left(11+2b\right)\left(b-2\right)\left(b+2\right)}{\left(b-2\right)\left(b+2\right)\left(47+15b\right)}
Divide \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by \frac{47+15b}{\left(b-2\right)\left(b+2\right)} by multiplying \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by the reciprocal of \frac{47+15b}{\left(b-2\right)\left(b+2\right)}.
\frac{2b+11}{15b+47}
Cancel out \left(b-2\right)\left(b+2\right) in both numerator and denominator.
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2}{b+2}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{15}{\left(b-2\right)\left(b+2\right)}+\frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b+2 is \left(b-2\right)\left(b+2\right). Multiply \frac{2}{b+2} times \frac{b-2}{b-2}.
\frac{\frac{15+2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Since \frac{15}{\left(b-2\right)\left(b+2\right)} and \frac{2\left(b-2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{15+2b-4}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Do the multiplications in 15+2\left(b-2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{b^{2}-4}+\frac{15}{b-2}}
Combine like terms in 15+2b-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15}{b-2}}
Factor b^{2}-4.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17}{\left(b-2\right)\left(b+2\right)}+\frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b-2\right)\left(b+2\right) and b-2 is \left(b-2\right)\left(b+2\right). Multiply \frac{15}{b-2} times \frac{b+2}{b+2}.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)}}
Since \frac{17}{\left(b-2\right)\left(b+2\right)} and \frac{15\left(b+2\right)}{\left(b-2\right)\left(b+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{17+15b+30}{\left(b-2\right)\left(b+2\right)}}
Do the multiplications in 17+15\left(b+2\right).
\frac{\frac{11+2b}{\left(b-2\right)\left(b+2\right)}}{\frac{47+15b}{\left(b-2\right)\left(b+2\right)}}
Combine like terms in 17+15b+30.
\frac{\left(11+2b\right)\left(b-2\right)\left(b+2\right)}{\left(b-2\right)\left(b+2\right)\left(47+15b\right)}
Divide \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by \frac{47+15b}{\left(b-2\right)\left(b+2\right)} by multiplying \frac{11+2b}{\left(b-2\right)\left(b+2\right)} by the reciprocal of \frac{47+15b}{\left(b-2\right)\left(b+2\right)}.
\frac{2b+11}{15b+47}
Cancel out \left(b-2\right)\left(b+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}