Evaluate
\frac{8}{65}\approx 0.123076923
Factor
\frac{2 ^ {3}}{5 \cdot 13} = 0.12307692307692308
Share
Copied to clipboard
\frac{\frac{16}{500}}{2\times \frac{0.65}{5}}
Expand \frac{1.6}{50} by multiplying both numerator and the denominator by 10.
\frac{\frac{4}{125}}{2\times \frac{0.65}{5}}
Reduce the fraction \frac{16}{500} to lowest terms by extracting and canceling out 4.
\frac{\frac{4}{125}}{2\times \frac{65}{500}}
Expand \frac{0.65}{5} by multiplying both numerator and the denominator by 100.
\frac{\frac{4}{125}}{2\times \frac{13}{100}}
Reduce the fraction \frac{65}{500} to lowest terms by extracting and canceling out 5.
\frac{\frac{4}{125}}{\frac{2\times 13}{100}}
Express 2\times \frac{13}{100} as a single fraction.
\frac{\frac{4}{125}}{\frac{26}{100}}
Multiply 2 and 13 to get 26.
\frac{\frac{4}{125}}{\frac{13}{50}}
Reduce the fraction \frac{26}{100} to lowest terms by extracting and canceling out 2.
\frac{4}{125}\times \frac{50}{13}
Divide \frac{4}{125} by \frac{13}{50} by multiplying \frac{4}{125} by the reciprocal of \frac{13}{50}.
\frac{4\times 50}{125\times 13}
Multiply \frac{4}{125} times \frac{50}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{200}{1625}
Do the multiplications in the fraction \frac{4\times 50}{125\times 13}.
\frac{8}{65}
Reduce the fraction \frac{200}{1625} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}