Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{x-2}{\left(x-2\right)\left(x+z-2\right)}-\frac{x+z-2}{\left(x-2\right)\left(x+z-2\right)}}{z}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+z-2 and x-2 is \left(x-2\right)\left(x+z-2\right). Multiply \frac{1}{x+z-2} times \frac{x-2}{x-2}. Multiply \frac{1}{x-2} times \frac{x+z-2}{x+z-2}.
\frac{\frac{x-2-\left(x+z-2\right)}{\left(x-2\right)\left(x+z-2\right)}}{z}
Since \frac{x-2}{\left(x-2\right)\left(x+z-2\right)} and \frac{x+z-2}{\left(x-2\right)\left(x+z-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2-x-z+2}{\left(x-2\right)\left(x+z-2\right)}}{z}
Do the multiplications in x-2-\left(x+z-2\right).
\frac{\frac{-z}{\left(x-2\right)\left(x+z-2\right)}}{z}
Combine like terms in x-2-x-z+2.
\frac{-z}{\left(x-2\right)\left(x+z-2\right)z}
Express \frac{\frac{-z}{\left(x-2\right)\left(x+z-2\right)}}{z} as a single fraction.
\frac{-1}{\left(x-2\right)\left(x+z-2\right)}
Cancel out z in both numerator and denominator.
\frac{-1}{x^{2}+xz-2x-2x-2z+4}
Apply the distributive property by multiplying each term of x-2 by each term of x+z-2.
\frac{-1}{x^{2}+xz-4x-2z+4}
Combine -2x and -2x to get -4x.
\frac{\frac{x-2}{\left(x-2\right)\left(x+z-2\right)}-\frac{x+z-2}{\left(x-2\right)\left(x+z-2\right)}}{z}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+z-2 and x-2 is \left(x-2\right)\left(x+z-2\right). Multiply \frac{1}{x+z-2} times \frac{x-2}{x-2}. Multiply \frac{1}{x-2} times \frac{x+z-2}{x+z-2}.
\frac{\frac{x-2-\left(x+z-2\right)}{\left(x-2\right)\left(x+z-2\right)}}{z}
Since \frac{x-2}{\left(x-2\right)\left(x+z-2\right)} and \frac{x+z-2}{\left(x-2\right)\left(x+z-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2-x-z+2}{\left(x-2\right)\left(x+z-2\right)}}{z}
Do the multiplications in x-2-\left(x+z-2\right).
\frac{\frac{-z}{\left(x-2\right)\left(x+z-2\right)}}{z}
Combine like terms in x-2-x-z+2.
\frac{-z}{\left(x-2\right)\left(x+z-2\right)z}
Express \frac{\frac{-z}{\left(x-2\right)\left(x+z-2\right)}}{z} as a single fraction.
\frac{-1}{\left(x-2\right)\left(x+z-2\right)}
Cancel out z in both numerator and denominator.
\frac{-1}{x^{2}+xz-2x-2x-2z+4}
Apply the distributive property by multiplying each term of x-2 by each term of x+z-2.
\frac{-1}{x^{2}+xz-4x-2z+4}
Combine -2x and -2x to get -4x.