Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x+3\right)\times \frac{1}{6}x=\left(2x+5\right)x
Variable x cannot be equal to any of the values -\frac{5}{2},-\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+3\right)\left(2x+5\right), the least common multiple of 2x+5,3+2x.
\left(\frac{1}{3}x+\frac{1}{2}\right)x=\left(2x+5\right)x
Use the distributive property to multiply 2x+3 by \frac{1}{6}.
\frac{1}{3}x^{2}+\frac{1}{2}x=\left(2x+5\right)x
Use the distributive property to multiply \frac{1}{3}x+\frac{1}{2} by x.
\frac{1}{3}x^{2}+\frac{1}{2}x=2x^{2}+5x
Use the distributive property to multiply 2x+5 by x.
\frac{1}{3}x^{2}+\frac{1}{2}x-2x^{2}=5x
Subtract 2x^{2} from both sides.
-\frac{5}{3}x^{2}+\frac{1}{2}x=5x
Combine \frac{1}{3}x^{2} and -2x^{2} to get -\frac{5}{3}x^{2}.
-\frac{5}{3}x^{2}+\frac{1}{2}x-5x=0
Subtract 5x from both sides.
-\frac{5}{3}x^{2}-\frac{9}{2}x=0
Combine \frac{1}{2}x and -5x to get -\frac{9}{2}x.
x\left(-\frac{5}{3}x-\frac{9}{2}\right)=0
Factor out x.
x=0 x=-\frac{27}{10}
To find equation solutions, solve x=0 and -\frac{5x}{3}-\frac{9}{2}=0.
\left(2x+3\right)\times \frac{1}{6}x=\left(2x+5\right)x
Variable x cannot be equal to any of the values -\frac{5}{2},-\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+3\right)\left(2x+5\right), the least common multiple of 2x+5,3+2x.
\left(\frac{1}{3}x+\frac{1}{2}\right)x=\left(2x+5\right)x
Use the distributive property to multiply 2x+3 by \frac{1}{6}.
\frac{1}{3}x^{2}+\frac{1}{2}x=\left(2x+5\right)x
Use the distributive property to multiply \frac{1}{3}x+\frac{1}{2} by x.
\frac{1}{3}x^{2}+\frac{1}{2}x=2x^{2}+5x
Use the distributive property to multiply 2x+5 by x.
\frac{1}{3}x^{2}+\frac{1}{2}x-2x^{2}=5x
Subtract 2x^{2} from both sides.
-\frac{5}{3}x^{2}+\frac{1}{2}x=5x
Combine \frac{1}{3}x^{2} and -2x^{2} to get -\frac{5}{3}x^{2}.
-\frac{5}{3}x^{2}+\frac{1}{2}x-5x=0
Subtract 5x from both sides.
-\frac{5}{3}x^{2}-\frac{9}{2}x=0
Combine \frac{1}{2}x and -5x to get -\frac{9}{2}x.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\left(-\frac{9}{2}\right)^{2}}}{2\left(-\frac{5}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5}{3} for a, -\frac{9}{2} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{9}{2}\right)±\frac{9}{2}}{2\left(-\frac{5}{3}\right)}
Take the square root of \left(-\frac{9}{2}\right)^{2}.
x=\frac{\frac{9}{2}±\frac{9}{2}}{2\left(-\frac{5}{3}\right)}
The opposite of -\frac{9}{2} is \frac{9}{2}.
x=\frac{\frac{9}{2}±\frac{9}{2}}{-\frac{10}{3}}
Multiply 2 times -\frac{5}{3}.
x=\frac{9}{-\frac{10}{3}}
Now solve the equation x=\frac{\frac{9}{2}±\frac{9}{2}}{-\frac{10}{3}} when ± is plus. Add \frac{9}{2} to \frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{27}{10}
Divide 9 by -\frac{10}{3} by multiplying 9 by the reciprocal of -\frac{10}{3}.
x=\frac{0}{-\frac{10}{3}}
Now solve the equation x=\frac{\frac{9}{2}±\frac{9}{2}}{-\frac{10}{3}} when ± is minus. Subtract \frac{9}{2} from \frac{9}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -\frac{10}{3} by multiplying 0 by the reciprocal of -\frac{10}{3}.
x=-\frac{27}{10} x=0
The equation is now solved.
\left(2x+3\right)\times \frac{1}{6}x=\left(2x+5\right)x
Variable x cannot be equal to any of the values -\frac{5}{2},-\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+3\right)\left(2x+5\right), the least common multiple of 2x+5,3+2x.
\left(\frac{1}{3}x+\frac{1}{2}\right)x=\left(2x+5\right)x
Use the distributive property to multiply 2x+3 by \frac{1}{6}.
\frac{1}{3}x^{2}+\frac{1}{2}x=\left(2x+5\right)x
Use the distributive property to multiply \frac{1}{3}x+\frac{1}{2} by x.
\frac{1}{3}x^{2}+\frac{1}{2}x=2x^{2}+5x
Use the distributive property to multiply 2x+5 by x.
\frac{1}{3}x^{2}+\frac{1}{2}x-2x^{2}=5x
Subtract 2x^{2} from both sides.
-\frac{5}{3}x^{2}+\frac{1}{2}x=5x
Combine \frac{1}{3}x^{2} and -2x^{2} to get -\frac{5}{3}x^{2}.
-\frac{5}{3}x^{2}+\frac{1}{2}x-5x=0
Subtract 5x from both sides.
-\frac{5}{3}x^{2}-\frac{9}{2}x=0
Combine \frac{1}{2}x and -5x to get -\frac{9}{2}x.
\frac{-\frac{5}{3}x^{2}-\frac{9}{2}x}{-\frac{5}{3}}=\frac{0}{-\frac{5}{3}}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{9}{2}}{-\frac{5}{3}}\right)x=\frac{0}{-\frac{5}{3}}
Dividing by -\frac{5}{3} undoes the multiplication by -\frac{5}{3}.
x^{2}+\frac{27}{10}x=\frac{0}{-\frac{5}{3}}
Divide -\frac{9}{2} by -\frac{5}{3} by multiplying -\frac{9}{2} by the reciprocal of -\frac{5}{3}.
x^{2}+\frac{27}{10}x=0
Divide 0 by -\frac{5}{3} by multiplying 0 by the reciprocal of -\frac{5}{3}.
x^{2}+\frac{27}{10}x+\left(\frac{27}{20}\right)^{2}=\left(\frac{27}{20}\right)^{2}
Divide \frac{27}{10}, the coefficient of the x term, by 2 to get \frac{27}{20}. Then add the square of \frac{27}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{27}{10}x+\frac{729}{400}=\frac{729}{400}
Square \frac{27}{20} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{27}{20}\right)^{2}=\frac{729}{400}
Factor x^{2}+\frac{27}{10}x+\frac{729}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{27}{20}\right)^{2}}=\sqrt{\frac{729}{400}}
Take the square root of both sides of the equation.
x+\frac{27}{20}=\frac{27}{20} x+\frac{27}{20}=-\frac{27}{20}
Simplify.
x=0 x=-\frac{27}{10}
Subtract \frac{27}{20} from both sides of the equation.