Evaluate
\frac{27}{17}\approx 1.588235294
Factor
\frac{3 ^ {3}}{17} = 1\frac{10}{17} = 1.588235294117647
Share
Copied to clipboard
\frac{\frac{1}{5}+\frac{3\times 25}{5\times 6}-\frac{2}{\frac{4}{9}}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Multiply \frac{3}{5} times \frac{25}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{5}+\frac{75}{30}-\frac{2}{\frac{4}{9}}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Do the multiplications in the fraction \frac{3\times 25}{5\times 6}.
\frac{\frac{1}{5}+\frac{5}{2}-\frac{2}{\frac{4}{9}}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Reduce the fraction \frac{75}{30} to lowest terms by extracting and canceling out 15.
\frac{\frac{2}{10}+\frac{25}{10}-\frac{2}{\frac{4}{9}}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Least common multiple of 5 and 2 is 10. Convert \frac{1}{5} and \frac{5}{2} to fractions with denominator 10.
\frac{\frac{2+25}{10}-\frac{2}{\frac{4}{9}}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Since \frac{2}{10} and \frac{25}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{27}{10}-\frac{2}{\frac{4}{9}}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Add 2 and 25 to get 27.
\frac{\frac{27}{10}-2\times \frac{9}{4}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Divide 2 by \frac{4}{9} by multiplying 2 by the reciprocal of \frac{4}{9}.
\frac{\frac{27}{10}-\frac{2\times 9}{4}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Express 2\times \frac{9}{4} as a single fraction.
\frac{\frac{27}{10}-\frac{18}{4}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Multiply 2 and 9 to get 18.
\frac{\frac{27}{10}-\frac{9}{2}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{27}{10}-\frac{45}{10}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Least common multiple of 10 and 2 is 10. Convert \frac{27}{10} and \frac{9}{2} to fractions with denominator 10.
\frac{\frac{27-45}{10}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Since \frac{27}{10} and \frac{45}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-18}{10}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Subtract 45 from 27 to get -18.
\frac{-\frac{9}{5}}{\frac{4}{9}\left(\frac{1}{5}-2\right)-\frac{1}{3}}
Reduce the fraction \frac{-18}{10} to lowest terms by extracting and canceling out 2.
\frac{-\frac{9}{5}}{\frac{4}{9}\left(\frac{1}{5}-\frac{10}{5}\right)-\frac{1}{3}}
Convert 2 to fraction \frac{10}{5}.
\frac{-\frac{9}{5}}{\frac{4}{9}\times \frac{1-10}{5}-\frac{1}{3}}
Since \frac{1}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{9}{5}}{\frac{4}{9}\left(-\frac{9}{5}\right)-\frac{1}{3}}
Subtract 10 from 1 to get -9.
\frac{-\frac{9}{5}}{\frac{4\left(-9\right)}{9\times 5}-\frac{1}{3}}
Multiply \frac{4}{9} times -\frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{9}{5}}{\frac{-36}{45}-\frac{1}{3}}
Do the multiplications in the fraction \frac{4\left(-9\right)}{9\times 5}.
\frac{-\frac{9}{5}}{-\frac{4}{5}-\frac{1}{3}}
Reduce the fraction \frac{-36}{45} to lowest terms by extracting and canceling out 9.
\frac{-\frac{9}{5}}{-\frac{12}{15}-\frac{5}{15}}
Least common multiple of 5 and 3 is 15. Convert -\frac{4}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{-\frac{9}{5}}{\frac{-12-5}{15}}
Since -\frac{12}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{9}{5}}{-\frac{17}{15}}
Subtract 5 from -12 to get -17.
-\frac{9}{5}\left(-\frac{15}{17}\right)
Divide -\frac{9}{5} by -\frac{17}{15} by multiplying -\frac{9}{5} by the reciprocal of -\frac{17}{15}.
\frac{-9\left(-15\right)}{5\times 17}
Multiply -\frac{9}{5} times -\frac{15}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{135}{85}
Do the multiplications in the fraction \frac{-9\left(-15\right)}{5\times 17}.
\frac{27}{17}
Reduce the fraction \frac{135}{85} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}